Loading…

Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System

We study Fredholm determinants of the Painlevé II and Painlevé XXXIV kernels. In certain critical unitary random matrix ensembles, these determinants describe special gap probabilities of eigenvalues. We obtain Tracy–Widom formulas for the Fredholm determinants, which are explicitly given in terms o...

Full description

Saved in:
Bibliographic Details
Published in:Communications in mathematical physics 2019-01, Vol.365 (2), p.515-567
Main Authors: Xu, Shuai-Xia, Dai, Dan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83
cites cdi_FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83
container_end_page 567
container_issue 2
container_start_page 515
container_title Communications in mathematical physics
container_volume 365
creator Xu, Shuai-Xia
Dai, Dan
description We study Fredholm determinants of the Painlevé II and Painlevé XXXIV kernels. In certain critical unitary random matrix ensembles, these determinants describe special gap probabilities of eigenvalues. We obtain Tracy–Widom formulas for the Fredholm determinants, which are explicitly given in terms of integrals involving a family of distinguished solutions to the coupled Painlevé II system in dimension four. Moreover, the large gap asymptotics for these Fredholm determinants are derived, where the constant terms are given explicitly in terms of the Riemann zeta-function.
doi_str_mv 10.1007/s00220-018-3257-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2175939348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2175939348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83</originalsourceid><addsrcrecordid>eNp1kEtKxEAQhhtRcBw9gLsG19Gq7qSTLGV8DYwoOoPLppN0tMc8xu5EzM47eArP4U08iQkRXLkqKL7_L-oj5BDhGAHCEwfAGHiAkcdZEHrdFpmgz5kHMYptMgFA8LhAsUv2nFsDQMyEmJDnpVVp9_3-8WCyuqRnxjXWJG1j6spRU9GZNY1JVUFXlWmU7eidqgbwWvXcGz2vnC6TQjvar2nzpOmsbjeFzuitMlWhX78-6XxO7zvX6HKf7OSqcPrgd07J6uJ8ObvyFjeX89npwks5isZjisXoaz9CoVNfg9JBIlSQ8Bg4BkywKEeVaoaxApZDGCJLszRWKksU6CTiU3I09m5s_dJq18h13dqqPykZhkHMY-4PFI5UamvnrM7lxpqyf1EiyMGpHJ3K3qkcnMquz7Ax43q2etT2r_n_0A9nA3xU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2175939348</pqid></control><display><type>article</type><title>Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System</title><source>Springer Nature</source><creator>Xu, Shuai-Xia ; Dai, Dan</creator><creatorcontrib>Xu, Shuai-Xia ; Dai, Dan</creatorcontrib><description>We study Fredholm determinants of the Painlevé II and Painlevé XXXIV kernels. In certain critical unitary random matrix ensembles, these determinants describe special gap probabilities of eigenvalues. We obtain Tracy–Widom formulas for the Fredholm determinants, which are explicitly given in terms of integrals involving a family of distinguished solutions to the coupled Painlevé II system in dimension four. Moreover, the large gap asymptotics for these Fredholm determinants are derived, where the constant terms are given explicitly in terms of the Riemann zeta-function.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-018-3257-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Determinants ; Eigenvalues ; Mathematical and Computational Physics ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2019-01, Vol.365 (2), p.515-567</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83</citedby><cites>FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83</cites><orcidid>0000-0001-8951-8786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Xu, Shuai-Xia</creatorcontrib><creatorcontrib>Dai, Dan</creatorcontrib><title>Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>We study Fredholm determinants of the Painlevé II and Painlevé XXXIV kernels. In certain critical unitary random matrix ensembles, these determinants describe special gap probabilities of eigenvalues. We obtain Tracy–Widom formulas for the Fredholm determinants, which are explicitly given in terms of integrals involving a family of distinguished solutions to the coupled Painlevé II system in dimension four. Moreover, the large gap asymptotics for these Fredholm determinants are derived, where the constant terms are given explicitly in terms of the Riemann zeta-function.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Determinants</subject><subject>Eigenvalues</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtKxEAQhhtRcBw9gLsG19Gq7qSTLGV8DYwoOoPLppN0tMc8xu5EzM47eArP4U08iQkRXLkqKL7_L-oj5BDhGAHCEwfAGHiAkcdZEHrdFpmgz5kHMYptMgFA8LhAsUv2nFsDQMyEmJDnpVVp9_3-8WCyuqRnxjXWJG1j6spRU9GZNY1JVUFXlWmU7eidqgbwWvXcGz2vnC6TQjvar2nzpOmsbjeFzuitMlWhX78-6XxO7zvX6HKf7OSqcPrgd07J6uJ8ObvyFjeX89npwks5isZjisXoaz9CoVNfg9JBIlSQ8Bg4BkywKEeVaoaxApZDGCJLszRWKksU6CTiU3I09m5s_dJq18h13dqqPykZhkHMY-4PFI5UamvnrM7lxpqyf1EiyMGpHJ3K3qkcnMquz7Ax43q2etT2r_n_0A9nA3xU</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Xu, Shuai-Xia</creator><creator>Dai, Dan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8951-8786</orcidid></search><sort><creationdate>20190101</creationdate><title>Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System</title><author>Xu, Shuai-Xia ; Dai, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Determinants</topic><topic>Eigenvalues</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shuai-Xia</creatorcontrib><creatorcontrib>Dai, Dan</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shuai-Xia</au><au>Dai, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>365</volume><issue>2</issue><spage>515</spage><epage>567</epage><pages>515-567</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>We study Fredholm determinants of the Painlevé II and Painlevé XXXIV kernels. In certain critical unitary random matrix ensembles, these determinants describe special gap probabilities of eigenvalues. We obtain Tracy–Widom formulas for the Fredholm determinants, which are explicitly given in terms of integrals involving a family of distinguished solutions to the coupled Painlevé II system in dimension four. Moreover, the large gap asymptotics for these Fredholm determinants are derived, where the constant terms are given explicitly in terms of the Riemann zeta-function.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-018-3257-y</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-8951-8786</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2019-01, Vol.365 (2), p.515-567
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2175939348
source Springer Nature
subjects Classical and Quantum Gravitation
Complex Systems
Determinants
Eigenvalues
Mathematical and Computational Physics
Mathematical Physics
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Tracy–Widom Distributions in Critical Unitary Random Matrix Ensembles and the Coupled Painlevé II System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracy%E2%80%93Widom%20Distributions%20in%20Critical%20Unitary%20Random%20Matrix%20Ensembles%20and%20the%20Coupled%20Painlev%C3%A9%20II%20System&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Xu,%20Shuai-Xia&rft.date=2019-01-01&rft.volume=365&rft.issue=2&rft.spage=515&rft.epage=567&rft.pages=515-567&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-018-3257-y&rft_dat=%3Cproquest_cross%3E2175939348%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-2a2914e4816ec4e0ae5b6a5b3903152628f1ace219a02f07712cdc9aadba0eb83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2175939348&rft_id=info:pmid/&rfr_iscdi=true