Loading…

Sampling, Embedding and Inference for CARMA Processes

A CARMA(p,q) process Y is a strictly stationary solution Y of the pth‐order formal stochastic differential equation a(D)Yt = b(D)DLt, where L is a two‐sided Lévy process, a(z) and b(z) are polynomials of degrees p and q respectively, with p > q, and D denotes differentiation with respect to t. Si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of time series analysis 2019-03, Vol.40 (2), p.163-181
Main Authors: Brockwell, Peter J., Lindner, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3
cites cdi_FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3
container_end_page 181
container_issue 2
container_start_page 163
container_title Journal of time series analysis
container_volume 40
creator Brockwell, Peter J.
Lindner, Alexander
description A CARMA(p,q) process Y is a strictly stationary solution Y of the pth‐order formal stochastic differential equation a(D)Yt = b(D)DLt, where L is a two‐sided Lévy process, a(z) and b(z) are polynomials of degrees p and q respectively, with p > q, and D denotes differentiation with respect to t. Since estimation of the coefficients of a(z) and b(z) is frequently based on observations of the Δ‐sampled sequence YΔ:=(YnΔ)n∈Z, for some Δ > 0, it is crucial to understand the relation between Y and YΔ. If EL12
doi_str_mv 10.1111/jtsa.12433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2176100458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2176100458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsXf8GCN3FrJtndJMelVK1UFFvPIbuZSMt-1KRF-u9NXc_OZQbmmXnhIeQa6ARi3W92wUyAZZyfkBFkhUiVVOyUjChkPFVCsnNyEcKGUigyASOSL027bdbd510yayu0No6J6Wwy7xx67GpMXO-Tafn-UiZvvq8xBAyX5MyZJuDVXx-Tj4fZavqULl4f59NykdacxzzmnLJGSmGcoJSrTHEsDM-ZEopbV8nKWMqctUrELUOUFiwCN6ICpKbiY3Iz_N36_muPYac3_d53MVIzEAVQmuUyUrcDVfs-BI9Ob_26Nf6ggeqjFn3Uon-1RBgG-Hvd4OEfUj-vluVw8wMcVWM7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176100458</pqid></control><display><type>article</type><title>Sampling, Embedding and Inference for CARMA Processes</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Brockwell, Peter J. ; Lindner, Alexander</creator><creatorcontrib>Brockwell, Peter J. ; Lindner, Alexander</creatorcontrib><description>A CARMA(p,q) process Y is a strictly stationary solution Y of the pth‐order formal stochastic differential equation a(D)Yt = b(D)DLt, where L is a two‐sided Lévy process, a(z) and b(z) are polynomials of degrees p and q respectively, with p &gt; q, and D denotes differentiation with respect to t. Since estimation of the coefficients of a(z) and b(z) is frequently based on observations of the Δ‐sampled sequence YΔ:=(YnΔ)n∈Z, for some Δ &gt; 0, it is crucial to understand the relation between Y and YΔ. If EL12&lt;∞ then YΔ is an ARMA sequence with coefficients depending on those of Y and the crucial problems for estimation are the determination of the coefficients of YΔ from those of Y (the sampling problem) and the determination of the coefficients of Y from those of YΔ (the embedding problem). In this article we consider both questions and use the results to determine the asymptotic distribution, as n→∞, with Δ fixed, of nΔ(β^−β), where β^ is the quasi‐maximum‐likelihood estimator of the vector of coefficients of a(z) and b(z), based on n consecutive observations of YΔ.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12433</identifier><language>eng</language><publisher>Oxford, UK: John Wiley &amp; Sons, Ltd</publisher><subject>CARMA process ; Coefficients ; complex‐valued information matrix ; Differential equations ; Differentiation ; Embedding ; Polynomials ; quasi‐maximum‐likelihood estimation ; Sampling</subject><ispartof>Journal of time series analysis, 2019-03, Vol.40 (2), p.163-181</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2019 John Wiley &amp; Sons, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3</citedby><cites>FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923,33221</link.rule.ids></links><search><creatorcontrib>Brockwell, Peter J.</creatorcontrib><creatorcontrib>Lindner, Alexander</creatorcontrib><title>Sampling, Embedding and Inference for CARMA Processes</title><title>Journal of time series analysis</title><description>A CARMA(p,q) process Y is a strictly stationary solution Y of the pth‐order formal stochastic differential equation a(D)Yt = b(D)DLt, where L is a two‐sided Lévy process, a(z) and b(z) are polynomials of degrees p and q respectively, with p &gt; q, and D denotes differentiation with respect to t. Since estimation of the coefficients of a(z) and b(z) is frequently based on observations of the Δ‐sampled sequence YΔ:=(YnΔ)n∈Z, for some Δ &gt; 0, it is crucial to understand the relation between Y and YΔ. If EL12&lt;∞ then YΔ is an ARMA sequence with coefficients depending on those of Y and the crucial problems for estimation are the determination of the coefficients of YΔ from those of Y (the sampling problem) and the determination of the coefficients of Y from those of YΔ (the embedding problem). In this article we consider both questions and use the results to determine the asymptotic distribution, as n→∞, with Δ fixed, of nΔ(β^−β), where β^ is the quasi‐maximum‐likelihood estimator of the vector of coefficients of a(z) and b(z), based on n consecutive observations of YΔ.</description><subject>CARMA process</subject><subject>Coefficients</subject><subject>complex‐valued information matrix</subject><subject>Differential equations</subject><subject>Differentiation</subject><subject>Embedding</subject><subject>Polynomials</subject><subject>quasi‐maximum‐likelihood estimation</subject><subject>Sampling</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kE1LAzEQhoMoWKsXf8GCN3FrJtndJMelVK1UFFvPIbuZSMt-1KRF-u9NXc_OZQbmmXnhIeQa6ARi3W92wUyAZZyfkBFkhUiVVOyUjChkPFVCsnNyEcKGUigyASOSL027bdbd510yayu0No6J6Wwy7xx67GpMXO-Tafn-UiZvvq8xBAyX5MyZJuDVXx-Tj4fZavqULl4f59NykdacxzzmnLJGSmGcoJSrTHEsDM-ZEopbV8nKWMqctUrELUOUFiwCN6ICpKbiY3Iz_N36_muPYac3_d53MVIzEAVQmuUyUrcDVfs-BI9Ob_26Nf6ggeqjFn3Uon-1RBgG-Hvd4OEfUj-vluVw8wMcVWM7</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Brockwell, Peter J.</creator><creator>Lindner, Alexander</creator><general>John Wiley &amp; Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>201903</creationdate><title>Sampling, Embedding and Inference for CARMA Processes</title><author>Brockwell, Peter J. ; Lindner, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CARMA process</topic><topic>Coefficients</topic><topic>complex‐valued information matrix</topic><topic>Differential equations</topic><topic>Differentiation</topic><topic>Embedding</topic><topic>Polynomials</topic><topic>quasi‐maximum‐likelihood estimation</topic><topic>Sampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brockwell, Peter J.</creatorcontrib><creatorcontrib>Lindner, Alexander</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brockwell, Peter J.</au><au>Lindner, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling, Embedding and Inference for CARMA Processes</atitle><jtitle>Journal of time series analysis</jtitle><date>2019-03</date><risdate>2019</risdate><volume>40</volume><issue>2</issue><spage>163</spage><epage>181</epage><pages>163-181</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>A CARMA(p,q) process Y is a strictly stationary solution Y of the pth‐order formal stochastic differential equation a(D)Yt = b(D)DLt, where L is a two‐sided Lévy process, a(z) and b(z) are polynomials of degrees p and q respectively, with p &gt; q, and D denotes differentiation with respect to t. Since estimation of the coefficients of a(z) and b(z) is frequently based on observations of the Δ‐sampled sequence YΔ:=(YnΔ)n∈Z, for some Δ &gt; 0, it is crucial to understand the relation between Y and YΔ. If EL12&lt;∞ then YΔ is an ARMA sequence with coefficients depending on those of Y and the crucial problems for estimation are the determination of the coefficients of YΔ from those of Y (the sampling problem) and the determination of the coefficients of Y from those of YΔ (the embedding problem). In this article we consider both questions and use the results to determine the asymptotic distribution, as n→∞, with Δ fixed, of nΔ(β^−β), where β^ is the quasi‐maximum‐likelihood estimator of the vector of coefficients of a(z) and b(z), based on n consecutive observations of YΔ.</abstract><cop>Oxford, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1111/jtsa.12433</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2019-03, Vol.40 (2), p.163-181
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_journals_2176100458
source International Bibliography of the Social Sciences (IBSS); Wiley-Blackwell Read & Publish Collection
subjects CARMA process
Coefficients
complex‐valued information matrix
Differential equations
Differentiation
Embedding
Polynomials
quasi‐maximum‐likelihood estimation
Sampling
title Sampling, Embedding and Inference for CARMA Processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T02%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling,%20Embedding%20and%20Inference%20for%20CARMA%20Processes&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Brockwell,%20Peter%20J.&rft.date=2019-03&rft.volume=40&rft.issue=2&rft.spage=163&rft.epage=181&rft.pages=163-181&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12433&rft_dat=%3Cproquest_cross%3E2176100458%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3343-2ff9da887af70039493e6a3529793dfb8bad02fdd970392ee8d1de13a7b1e0ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2176100458&rft_id=info:pmid/&rfr_iscdi=true