Loading…

Microstructure and mechanical properties of Mg–3.0Y–2.5Nd–1.0Gd–xZn–0.5Zr alloys produced by metallic and sand mold casting

Mg–3.0Y–2.5Nd–1.0Gd–xZn–0.5Zr (x = 0, 0.2, 0.5, and 1.0) (wt%) alloys were produced by metallic and sand mold casting to study the microstructure and mechanical properties of the alloys. The as-cast Zn-free alloys consist of α-Mg and eutectics, whereas the Zn-containing alloys contain additional lon...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2017-08, Vol.32 (16), p.3191-3201
Main Authors: Zhang, Haohao, Zhang, Liang, Wu, Guohua, Chen, Antao, Cui, Wendong, Chen, Yushi, Wang, Quan, Gao, Zhankui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mg–3.0Y–2.5Nd–1.0Gd–xZn–0.5Zr (x = 0, 0.2, 0.5, and 1.0) (wt%) alloys were produced by metallic and sand mold casting to study the microstructure and mechanical properties of the alloys. The as-cast Zn-free alloys consist of α-Mg and eutectics, whereas the Zn-containing alloys contain additional long-period stacking ordered (LPSO) structures. With a higher solidification, the cooling rate brought by metallic mold casting, grains, and eutectics are refined, which enhances the elongation of the alloys, accompanied by a decrease of area fraction of the LPSO structure. Some residual eutectics in the Mg–3.0Y–2.5Nd–1.0Gd–1.0Zn–0.5Zr alloys act as obstacles to grain boundary migration during solution treatment, which make the average grain size 15–20 μm smaller than that of the other alloys and hence improve the elongation of the alloys. The Zn addition brings notable enhancements to mechanical properties of the alloys due to solid solution strengthening of Zn. Especially, the peak-aged Mg–3.0Y–2.5Nd–1.0Gd–0.5Zn–0.5Zr alloys perform with the highest overall tensile properties.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2017.302