Loading…
Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm
When fitting complex models, such as finite element or discrete event simulations, the experiment design should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort, sequential design strategies allow experimenters to collect data only until some measure...
Saved in:
Published in: | Technometrics 2017-01, Vol.59 (1), p.11-22 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 11 |
container_title | Technometrics |
container_volume | 59 |
creator | Duan, Weitao Ankenman, Bruce E. Sanchez, Susan M. Sanchez, Paul J. |
description | When fitting complex models, such as finite element or discrete event simulations, the experiment design should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort, sequential design strategies allow experimenters to collect data only until some measure of prediction precision is reached. In this article, we present a batch sequential experiment design method that uses sliced full factorial-based Latin hypercube designs (sFFLHDs), which are an extension to the concept of sliced orthogonal array-based Latin hypercube designs (OALHDs). At all stages of the sequential design, good univariate stratification is achieved. The structure of the FFLHDs also tends to produce uniformity in higher dimensions, especially at certain stages of the design. We show that our batch sequential design approach has good sampling and fitting qualities through both empirical studies and theoretical arguments. Supplementary materials are available online. |
doi_str_mv | 10.1080/00401706.2015.1108233 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2176260035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44868891</jstor_id><sourcerecordid>44868891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3</originalsourceid><addsrcrecordid>eNp9kNFLwzAQxoMoOKd_wiDgc-claZv2zW06Jwx8mD6Ha5psnV07kxbZf2_Gpo9C4Mjd9313_AgZMRgzyOABIAYmIR1zYMmYhR4X4oIMWCJkxCUXl2Rw1ERH0TW58X4LwATP5IBsV3WlTUnnfV3TOequdRXW0RR9aC6xqxq6OOyN031h6JPx1brxFMOjc4c78926T2pbF_5T7PSGrsxXb5ouZJzVdFKvQ2a32d2SK4u1N3fnOiQf8-f32SJavr28zibLSMcgu0gYm2cgBFpucptCaVPMEpSSc4xjAdaWPEVpNS8Mos7yAopU57FFiDERVgzJ_Sl379pwjO_Utu1dE1YqzmTKUwCRBFVyUmnXeu-MVXtX7dAdFAN1xKp-saojVnXGGnyjk2_rA6s_UxxnaZblLMwfT_OqCVx2GAjVperwULfOOmx05ZX4f8UP7vOIQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2176260035</pqid></control><display><type>article</type><title>Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm</title><source>Taylor and Francis Science and Technology Collection</source><source>JSTOR</source><creator>Duan, Weitao ; Ankenman, Bruce E. ; Sanchez, Susan M. ; Sanchez, Paul J.</creator><creatorcontrib>Duan, Weitao ; Ankenman, Bruce E. ; Sanchez, Susan M. ; Sanchez, Paul J.</creatorcontrib><description>When fitting complex models, such as finite element or discrete event simulations, the experiment design should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort, sequential design strategies allow experimenters to collect data only until some measure of prediction precision is reached. In this article, we present a batch sequential experiment design method that uses sliced full factorial-based Latin hypercube designs (sFFLHDs), which are an extension to the concept of sliced orthogonal array-based Latin hypercube designs (OALHDs). At all stages of the sequential design, good univariate stratification is achieved. The structure of the FFLHDs also tends to produce uniformity in higher dimensions, especially at certain stages of the design. We show that our batch sequential design approach has good sampling and fitting qualities through both empirical studies and theoretical arguments. Supplementary materials are available online.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.2015.1108233</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Algorithms ; Computer experiments ; Computer model ; Computer simulation ; Design ; Design of experiments ; Discrete event systems ; Experiments ; Finite element method ; Hypercubes ; Metamodels ; Orthogonality ; Simulation ; Simulation experiments ; Space filling design</subject><ispartof>Technometrics, 2017-01, Vol.59 (1), p.11-22</ispartof><rights>In the Public Domain 2017</rights><rights>2017 American Statistical Association and the American Society for Quality</rights><rights>Copyright American Society for Quality Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3</citedby><cites>FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44868891$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44868891$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Duan, Weitao</creatorcontrib><creatorcontrib>Ankenman, Bruce E.</creatorcontrib><creatorcontrib>Sanchez, Susan M.</creatorcontrib><creatorcontrib>Sanchez, Paul J.</creatorcontrib><title>Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm</title><title>Technometrics</title><description>When fitting complex models, such as finite element or discrete event simulations, the experiment design should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort, sequential design strategies allow experimenters to collect data only until some measure of prediction precision is reached. In this article, we present a batch sequential experiment design method that uses sliced full factorial-based Latin hypercube designs (sFFLHDs), which are an extension to the concept of sliced orthogonal array-based Latin hypercube designs (OALHDs). At all stages of the sequential design, good univariate stratification is achieved. The structure of the FFLHDs also tends to produce uniformity in higher dimensions, especially at certain stages of the design. We show that our batch sequential design approach has good sampling and fitting qualities through both empirical studies and theoretical arguments. Supplementary materials are available online.</description><subject>Algorithms</subject><subject>Computer experiments</subject><subject>Computer model</subject><subject>Computer simulation</subject><subject>Design</subject><subject>Design of experiments</subject><subject>Discrete event systems</subject><subject>Experiments</subject><subject>Finite element method</subject><subject>Hypercubes</subject><subject>Metamodels</subject><subject>Orthogonality</subject><subject>Simulation</subject><subject>Simulation experiments</subject><subject>Space filling design</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kNFLwzAQxoMoOKd_wiDgc-claZv2zW06Jwx8mD6Ha5psnV07kxbZf2_Gpo9C4Mjd9313_AgZMRgzyOABIAYmIR1zYMmYhR4X4oIMWCJkxCUXl2Rw1ERH0TW58X4LwATP5IBsV3WlTUnnfV3TOequdRXW0RR9aC6xqxq6OOyN031h6JPx1brxFMOjc4c78926T2pbF_5T7PSGrsxXb5ouZJzVdFKvQ2a32d2SK4u1N3fnOiQf8-f32SJavr28zibLSMcgu0gYm2cgBFpucptCaVPMEpSSc4xjAdaWPEVpNS8Mos7yAopU57FFiDERVgzJ_Sl379pwjO_Utu1dE1YqzmTKUwCRBFVyUmnXeu-MVXtX7dAdFAN1xKp-saojVnXGGnyjk2_rA6s_UxxnaZblLMwfT_OqCVx2GAjVperwULfOOmx05ZX4f8UP7vOIQA</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Duan, Weitao</creator><creator>Ankenman, Bruce E.</creator><creator>Sanchez, Susan M.</creator><creator>Sanchez, Paul J.</creator><general>Taylor & Francis</general><general>American Society for Quality and the American Statistical Association</general><general>American Society for Quality</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170102</creationdate><title>Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm</title><author>Duan, Weitao ; Ankenman, Bruce E. ; Sanchez, Susan M. ; Sanchez, Paul J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Computer experiments</topic><topic>Computer model</topic><topic>Computer simulation</topic><topic>Design</topic><topic>Design of experiments</topic><topic>Discrete event systems</topic><topic>Experiments</topic><topic>Finite element method</topic><topic>Hypercubes</topic><topic>Metamodels</topic><topic>Orthogonality</topic><topic>Simulation</topic><topic>Simulation experiments</topic><topic>Space filling design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Weitao</creatorcontrib><creatorcontrib>Ankenman, Bruce E.</creatorcontrib><creatorcontrib>Sanchez, Susan M.</creatorcontrib><creatorcontrib>Sanchez, Paul J.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Weitao</au><au>Ankenman, Bruce E.</au><au>Sanchez, Susan M.</au><au>Sanchez, Paul J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm</atitle><jtitle>Technometrics</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>59</volume><issue>1</issue><spage>11</spage><epage>22</epage><pages>11-22</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>When fitting complex models, such as finite element or discrete event simulations, the experiment design should exhibit desirable properties of both projectivity and orthogonality. To reduce experimental effort, sequential design strategies allow experimenters to collect data only until some measure of prediction precision is reached. In this article, we present a batch sequential experiment design method that uses sliced full factorial-based Latin hypercube designs (sFFLHDs), which are an extension to the concept of sliced orthogonal array-based Latin hypercube designs (OALHDs). At all stages of the sequential design, good univariate stratification is achieved. The structure of the FFLHDs also tends to produce uniformity in higher dimensions, especially at certain stages of the design. We show that our batch sequential design approach has good sampling and fitting qualities through both empirical studies and theoretical arguments. Supplementary materials are available online.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/00401706.2015.1108233</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 2017-01, Vol.59 (1), p.11-22 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_proquest_journals_2176260035 |
source | Taylor and Francis Science and Technology Collection; JSTOR |
subjects | Algorithms Computer experiments Computer model Computer simulation Design Design of experiments Discrete event systems Experiments Finite element method Hypercubes Metamodels Orthogonality Simulation Simulation experiments Space filling design |
title | Sliced Full Factorial-Based Latin Hypercube Designs as a Framework for a Batch Sequential Design Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliced%20Full%20Factorial-Based%20Latin%20Hypercube%20Designs%20as%20a%20Framework%20for%20a%20Batch%20Sequential%20Design%20Algorithm&rft.jtitle=Technometrics&rft.au=Duan,%20Weitao&rft.date=2017-01-02&rft.volume=59&rft.issue=1&rft.spage=11&rft.epage=22&rft.pages=11-22&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.2015.1108233&rft_dat=%3Cjstor_proqu%3E44868891%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-3ef98033af2e9f60df6a85a7722a4430ffd26a7fc2beaac89b0b6c94fa04a53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2176260035&rft_id=info:pmid/&rft_jstor_id=44868891&rfr_iscdi=true |