Loading…
Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses
We disclose a method of fabricating a low-voltage-driven smart glass based on micro-patterned liquid crystal (LC) Fresnel lenses and implement three proof-of-concept prototypes. Distinct from the conventional LC-based smart windows with the scattering state, the prominence of our proposed LC smart g...
Saved in:
Published in: | Applied optics (2004) 2019-02, Vol.58 (4), p.1146 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We disclose a method of fabricating a low-voltage-driven smart glass based on micro-patterned liquid crystal (LC) Fresnel lenses and implement three proof-of-concept prototypes. Distinct from the conventional LC-based smart windows with the scattering state, the prominence of our proposed LC smart glass in blurry state under both normal and oblique observations stems from the image distortion caused by LC Fresnel lenses. In addition, the high transmittance (>90%) in clear state is obtained by applying a low voltage of 2 V to each prototype. Moreover, by elaborating the design of the LC smart glass, the reversed switching states [i.e., a clear (voltage OFF) state and a blurry (voltage ON) state] and fast switching time can be simultaneously achieved. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.58.001146 |