Loading…

Glacier facies of Vestfonna (Svalbard) based on SAR images and GPR measurements

The warming climate of the Arctic affects the mass budget of glaciers, and changes in the distribution of glacier facies are indicative of their response to climate change. The glacial mass budget over large land ice masses can be estimated by remote sensing techniques, but selecting an efficient re...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing of environment 2019-02, Vol.221, p.373-385
Main Authors: Barzycka, Barbara, Błaszczyk, Małgorzata, Grabiec, Mariusz, Jania, Jacek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The warming climate of the Arctic affects the mass budget of glaciers, and changes in the distribution of glacier facies are indicative of their response to climate change. The glacial mass budget over large land ice masses can be estimated by remote sensing techniques, but selecting an efficient remote sensing method for recognizing and mapping glacier facies in the Arctic remains a challenge. In this study, we compared several methods of distinguishing the facies of the Vestfonna ice cap, Svalbard, based upon Synthetic Aperture Radar (SAR) images and terrestrial high frequency Ground Penetrating Radar (GPR) measurements. Glacier zones as determined using the backscattering coefficient (sigma0) of SAR images were compared against GPR data, and an alternative application of Internal Reflection Energy (IRE) calculated from terrestrial GPR data was also used for differentiating the extent of glacier facies. The IRE coefficient was found to offer a suitable method for distinguishing glacier zones and for validating SAR analysis. Furthermore, results of analysis of fully polarimetric Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) and European Remote Sensing Synthetic Aperture Radar (ERS-2 SAR) images were compared with the IRE coefficient classification. Especially promising method is H-α segmentation, where the glacier zone boundaries corresponded very well with both GPR visual interpretation and IRE classification results. The IRE coefficient's simplicity of calculation makes it a good alternative to the subjective GPR visual interpretation method, where results strongly depend on the operator's level of experience. We therefore recommend for GPR profiles to be used for additional validation of SAR image analysis in studies of glacier facies on the High Arctic ice masses. •5 methods of distinguishing glacier facies based on SAR and GPR data are tested.•IRE coefficient is a good alternative for a subjective GPR visual classification.•H-α classification yields especially good results of glacier zones discrimination.•Wavelength and polarisation of SAR affect ability of distinguishing glacier facies.
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2018.11.020