Loading…
Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO
This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be change...
Saved in:
Published in: | Cogent engineering 2018-01, Vol.5 (1), p.1443675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach. |
---|---|
ISSN: | 2331-1916 2331-1916 |
DOI: | 10.1080/23311916.2018.1443675 |