Loading…
Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO
This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be change...
Saved in:
Published in: | Cogent engineering 2018-01, Vol.5 (1), p.1443675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3 |
container_end_page | |
container_issue | 1 |
container_start_page | 1443675 |
container_title | Cogent engineering |
container_volume | 5 |
creator | Farokhi, A. Mahmoodabadi, M.J. |
description | This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach. |
doi_str_mv | 10.1080/23311916.2018.1443675 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2177087023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_732c862bc8314f1f974634e7092cf08e</doaj_id><sourcerecordid>2177087023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</originalsourceid><addsrcrecordid>eNp9UU1rHDEMHUoDDZv8hICh59latmfsubWEfgQCG0h7Nhp_pF489taeTdj8-s5209JTThJ60nuSXtNcAV0DVfQD4xxggH7NKKg1CMF72b1pzo_19gi8_S9_11zWuqWUAhcdHeh54ze7OUwYid8_Px9ISI-uVEfsIeEUTCUmp7nkSLInSHZYMEYX80PBiUzO_MQU6kRGrM6SnJaW5J7ItI9zaPO4dWYOj47c3W8umjOPsbrLl7hqfnz5_P36W3u7-Xpz_em2NaKDue1R8lGOlg28RyadAcdtJ5nkQjHPJB0kWCVwQQxgBx1Yb2FQaHozWD_yVXNz4rUZt3pXltPKQWcM-k8hlweNZQ4mOi05M6pno1EchAc_SNFz4RYNZjxVbuF6f-Lalfxr7-qst3lf0rK-ZiAlVZIuj1013anLlFxrcf6fKlB9dEj_dUgfHdIvDi1zH09zIflcJnzKJVo94yHm4gsmE6rmr1P8BiaLlt4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177087023</pqid></control><display><type>article</type><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><source>Taylor & Francis Open Access</source><source>Publicly Available Content Database</source><creator>Farokhi, A. ; Mahmoodabadi, M.J.</creator><contributor>Lam, James</contributor><creatorcontrib>Farokhi, A. ; Mahmoodabadi, M.J. ; Lam, James</creatorcontrib><description>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2018.1443675</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Algorithms ; Computer simulation ; Fuzzy control ; Fuzzy systems ; Inverse dynamics ; Linkage mechanisms ; multi-objective optimization ; Multiple objective analysis ; optimal control ; parallelogram five-bar mechanism ; Particle swarm optimization ; Performance evaluation ; Pruning</subject><ispartof>Cogent engineering, 2018-01, Vol.5 (1), p.1443675</ispartof><rights>2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license 2018</rights><rights>2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</citedby><cites>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</cites><orcidid>0000-0002-4249-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2018.1443675$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2177087023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27481,27903,27904,36991,44569,59120,59121</link.rule.ids></links><search><contributor>Lam, James</contributor><creatorcontrib>Farokhi, A.</creatorcontrib><creatorcontrib>Mahmoodabadi, M.J.</creatorcontrib><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><title>Cogent engineering</title><description>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Inverse dynamics</subject><subject>Linkage mechanisms</subject><subject>multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>optimal control</subject><subject>parallelogram five-bar mechanism</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Pruning</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rHDEMHUoDDZv8hICh59latmfsubWEfgQCG0h7Nhp_pF489taeTdj8-s5209JTThJ60nuSXtNcAV0DVfQD4xxggH7NKKg1CMF72b1pzo_19gi8_S9_11zWuqWUAhcdHeh54ze7OUwYid8_Px9ISI-uVEfsIeEUTCUmp7nkSLInSHZYMEYX80PBiUzO_MQU6kRGrM6SnJaW5J7ItI9zaPO4dWYOj47c3W8umjOPsbrLl7hqfnz5_P36W3u7-Xpz_em2NaKDue1R8lGOlg28RyadAcdtJ5nkQjHPJB0kWCVwQQxgBx1Yb2FQaHozWD_yVXNz4rUZt3pXltPKQWcM-k8hlweNZQ4mOi05M6pno1EchAc_SNFz4RYNZjxVbuF6f-Lalfxr7-qst3lf0rK-ZiAlVZIuj1013anLlFxrcf6fKlB9dEj_dUgfHdIvDi1zH09zIflcJnzKJVo94yHm4gsmE6rmr1P8BiaLlt4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Farokhi, A.</creator><creator>Mahmoodabadi, M.J.</creator><general>Cogent</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4249-8623</orcidid></search><sort><creationdate>20180101</creationdate><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><author>Farokhi, A. ; Mahmoodabadi, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Inverse dynamics</topic><topic>Linkage mechanisms</topic><topic>multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>optimal control</topic><topic>parallelogram five-bar mechanism</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Pruning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farokhi, A.</creatorcontrib><creatorcontrib>Mahmoodabadi, M.J.</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farokhi, A.</au><au>Mahmoodabadi, M.J.</au><au>Lam, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</atitle><jtitle>Cogent engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>1443675</spage><pages>1443675-</pages><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2018.1443675</doi><orcidid>https://orcid.org/0000-0002-4249-8623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-1916 |
ispartof | Cogent engineering, 2018-01, Vol.5 (1), p.1443675 |
issn | 2331-1916 2331-1916 |
language | eng |
recordid | cdi_proquest_journals_2177087023 |
source | Taylor & Francis Open Access; Publicly Available Content Database |
subjects | Algorithms Computer simulation Fuzzy control Fuzzy systems Inverse dynamics Linkage mechanisms multi-objective optimization Multiple objective analysis optimal control parallelogram five-bar mechanism Particle swarm optimization Performance evaluation Pruning |
title | Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20fuzzy%20inverse%20dynamics%20control%20of%20a%20parallelogram%20mechanism%20based%20on%20a%20new%20multi-objective%20PSO&rft.jtitle=Cogent%20engineering&rft.au=Farokhi,%20A.&rft.date=2018-01-01&rft.volume=5&rft.issue=1&rft.spage=1443675&rft.pages=1443675-&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2018.1443675&rft_dat=%3Cproquest_doaj_%3E2177087023%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2177087023&rft_id=info:pmid/&rfr_iscdi=true |