Loading…

Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO

This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be change...

Full description

Saved in:
Bibliographic Details
Published in:Cogent engineering 2018-01, Vol.5 (1), p.1443675
Main Authors: Farokhi, A., Mahmoodabadi, M.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3
cites cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3
container_end_page
container_issue 1
container_start_page 1443675
container_title Cogent engineering
container_volume 5
creator Farokhi, A.
Mahmoodabadi, M.J.
description This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.
doi_str_mv 10.1080/23311916.2018.1443675
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2177087023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_732c862bc8314f1f974634e7092cf08e</doaj_id><sourcerecordid>2177087023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</originalsourceid><addsrcrecordid>eNp9UU1rHDEMHUoDDZv8hICh59latmfsubWEfgQCG0h7Nhp_pF489taeTdj8-s5209JTThJ60nuSXtNcAV0DVfQD4xxggH7NKKg1CMF72b1pzo_19gi8_S9_11zWuqWUAhcdHeh54ze7OUwYid8_Px9ISI-uVEfsIeEUTCUmp7nkSLInSHZYMEYX80PBiUzO_MQU6kRGrM6SnJaW5J7ItI9zaPO4dWYOj47c3W8umjOPsbrLl7hqfnz5_P36W3u7-Xpz_em2NaKDue1R8lGOlg28RyadAcdtJ5nkQjHPJB0kWCVwQQxgBx1Yb2FQaHozWD_yVXNz4rUZt3pXltPKQWcM-k8hlweNZQ4mOi05M6pno1EchAc_SNFz4RYNZjxVbuF6f-Lalfxr7-qst3lf0rK-ZiAlVZIuj1013anLlFxrcf6fKlB9dEj_dUgfHdIvDi1zH09zIflcJnzKJVo94yHm4gsmE6rmr1P8BiaLlt4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177087023</pqid></control><display><type>article</type><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><source>Taylor &amp; Francis Open Access</source><source>Publicly Available Content Database</source><creator>Farokhi, A. ; Mahmoodabadi, M.J.</creator><contributor>Lam, James</contributor><creatorcontrib>Farokhi, A. ; Mahmoodabadi, M.J. ; Lam, James</creatorcontrib><description>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</description><identifier>ISSN: 2331-1916</identifier><identifier>EISSN: 2331-1916</identifier><identifier>DOI: 10.1080/23311916.2018.1443675</identifier><language>eng</language><publisher>Abingdon: Cogent</publisher><subject>Algorithms ; Computer simulation ; Fuzzy control ; Fuzzy systems ; Inverse dynamics ; Linkage mechanisms ; multi-objective optimization ; Multiple objective analysis ; optimal control ; parallelogram five-bar mechanism ; Particle swarm optimization ; Performance evaluation ; Pruning</subject><ispartof>Cogent engineering, 2018-01, Vol.5 (1), p.1443675</ispartof><rights>2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license 2018</rights><rights>2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</citedby><cites>FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</cites><orcidid>0000-0002-4249-8623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23311916.2018.1443675$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2177087023?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27481,27903,27904,36991,44569,59120,59121</link.rule.ids></links><search><contributor>Lam, James</contributor><creatorcontrib>Farokhi, A.</creatorcontrib><creatorcontrib>Mahmoodabadi, M.J.</creatorcontrib><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><title>Cogent engineering</title><description>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Inverse dynamics</subject><subject>Linkage mechanisms</subject><subject>multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>optimal control</subject><subject>parallelogram five-bar mechanism</subject><subject>Particle swarm optimization</subject><subject>Performance evaluation</subject><subject>Pruning</subject><issn>2331-1916</issn><issn>2331-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1rHDEMHUoDDZv8hICh59latmfsubWEfgQCG0h7Nhp_pF489taeTdj8-s5209JTThJ60nuSXtNcAV0DVfQD4xxggH7NKKg1CMF72b1pzo_19gi8_S9_11zWuqWUAhcdHeh54ze7OUwYid8_Px9ISI-uVEfsIeEUTCUmp7nkSLInSHZYMEYX80PBiUzO_MQU6kRGrM6SnJaW5J7ItI9zaPO4dWYOj47c3W8umjOPsbrLl7hqfnz5_P36W3u7-Xpz_em2NaKDue1R8lGOlg28RyadAcdtJ5nkQjHPJB0kWCVwQQxgBx1Yb2FQaHozWD_yVXNz4rUZt3pXltPKQWcM-k8hlweNZQ4mOi05M6pno1EchAc_SNFz4RYNZjxVbuF6f-Lalfxr7-qst3lf0rK-ZiAlVZIuj1013anLlFxrcf6fKlB9dEj_dUgfHdIvDi1zH09zIflcJnzKJVo94yHm4gsmE6rmr1P8BiaLlt4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Farokhi, A.</creator><creator>Mahmoodabadi, M.J.</creator><general>Cogent</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4249-8623</orcidid></search><sort><creationdate>20180101</creationdate><title>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</title><author>Farokhi, A. ; Mahmoodabadi, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Inverse dynamics</topic><topic>Linkage mechanisms</topic><topic>multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>optimal control</topic><topic>parallelogram five-bar mechanism</topic><topic>Particle swarm optimization</topic><topic>Performance evaluation</topic><topic>Pruning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farokhi, A.</creatorcontrib><creatorcontrib>Mahmoodabadi, M.J.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cogent engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farokhi, A.</au><au>Mahmoodabadi, M.J.</au><au>Lam, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO</atitle><jtitle>Cogent engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>5</volume><issue>1</issue><spage>1443675</spage><pages>1443675-</pages><issn>2331-1916</issn><eissn>2331-1916</eissn><abstract>This work presents a multi-objective optimization method based on high exploration particle swarm optimization, called MOHEPSO, for optimization problems with multiple objectives. In order to convert the single-objective (HEPSO) algorithm to the multi-objective one, its fundamentals should be changed. The leaders' selection in the proposed algorithm is based on the neighborhood radius concept for the global best position and the Sigma method for the personal best position. Also, a fuzzy elimination technique is used for pruning the archive. The numerical results of the MOHEPSO algorithm on mathematical test functions are compared with those of other multi-objective optimization algorithms for the performance evaluation of the algorithm. Finally, the proposed algorithm is implemented to find the optimum values of controller coefficients for a parallelogram five-bar linkage mechanism. The introduced control strategy is designed based on the inverse dynamics concepts, improved by fuzzy systems and optimized by regarding two objective functions. The simulation results are presented to demonstrate the efficiency and accuracy of this approach.</abstract><cop>Abingdon</cop><pub>Cogent</pub><doi>10.1080/23311916.2018.1443675</doi><orcidid>https://orcid.org/0000-0002-4249-8623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-1916
ispartof Cogent engineering, 2018-01, Vol.5 (1), p.1443675
issn 2331-1916
2331-1916
language eng
recordid cdi_proquest_journals_2177087023
source Taylor & Francis Open Access; Publicly Available Content Database
subjects Algorithms
Computer simulation
Fuzzy control
Fuzzy systems
Inverse dynamics
Linkage mechanisms
multi-objective optimization
Multiple objective analysis
optimal control
parallelogram five-bar mechanism
Particle swarm optimization
Performance evaluation
Pruning
title Optimal fuzzy inverse dynamics control of a parallelogram mechanism based on a new multi-objective PSO
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20fuzzy%20inverse%20dynamics%20control%20of%20a%20parallelogram%20mechanism%20based%20on%20a%20new%20multi-objective%20PSO&rft.jtitle=Cogent%20engineering&rft.au=Farokhi,%20A.&rft.date=2018-01-01&rft.volume=5&rft.issue=1&rft.spage=1443675&rft.pages=1443675-&rft.issn=2331-1916&rft.eissn=2331-1916&rft_id=info:doi/10.1080/23311916.2018.1443675&rft_dat=%3Cproquest_doaj_%3E2177087023%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-6a73b7bd2936a27ec1e3d57273482f270971d84a7ecc1a5151dfd198ac6c9dfb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2177087023&rft_id=info:pmid/&rfr_iscdi=true