Loading…
An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm
The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have v...
Saved in:
Published in: | Geology (Boulder) 2019, Vol.47 (1), p.83-86 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23 |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23 |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 83 |
container_title | Geology (Boulder) |
container_volume | 47 |
creator | Wu Huaichun, Wu Huaichun Fang Qiang, Fang Qiang Wang Xiangdong, Wang Xiangdong Hinnov, Linda A Qi Yuping, Qi Yuping Shen Shuzhong, Shen Shuzhong Yang Tianshui, Yang Tianshui Li Haiyan, Li Haiyan Chen Jitao, Chen Jitao Zhang Shihong, Zhang Shihong |
description | The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world. |
doi_str_mv | 10.1130/G45461.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2177131617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2177131617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</originalsourceid><addsrcrecordid>eNpNkN1q3DAQhUVoINskkEcQ9KZQvNVYsiVfLkubBhIS8nNtZHmc9WJLrmSn-A16nefp0-RJos02EBiYYeY7Z-AQcgZsCcDZ93ORiRyWcEAWUAiepLlKP5EFYwUkMgd-RD6HsGUMRCbVgjyvLH35-48L2i_nJdVh9M66vjW6o2PbIw1xQto4T8cN0mkY0PcujPSqDWFXw9BqG2_eTY8beoPWhrl70na3dc2baK195WzbYGQCvZvDiP377Sa6u-Qex80cBbeou_6EHDa6C3j6vx-Th58_7te_ksvr84v16jIxqcjGRKWVrJgQFZis1nVe50KhNJVKG4VZJWVhjKq51jL2lDesBq6YNiLDXGV1yo_Jl73v4N3vCcNYbt3kbXxZpiAlcMhBRurrnjLeheCxKQff9trPJbByl3i5T7yEiH7bo4_ogmnRGvzjfFd_8GVQlIxJxgv-CiIrhMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177131617</pqid></control><display><type>article</type><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><source>GeoScienceWorld</source><creator>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</creator><creatorcontrib>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</creatorcontrib><description>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G45461.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Asia ; biostratigraphy ; biozones ; Calibration ; Carbonates ; Carboniferous ; China ; Chordata ; Chronostratigraphy ; climate forcing ; Conodonta ; Correlation analysis ; Cycles ; cyclic processes ; cyclostratigraphy ; Eccentric orbits ; Ecological succession ; Far East ; Fourier analysis ; Geological time ; Geology ; Lithology ; Magnetic permeability ; magnetic properties ; Magnetic susceptibility ; magnetostratigraphy ; microfossils ; Mississippian ; Mudstone ; Obliquity ; orbital forcing ; paleomagnetism ; Paleotethys ; Paleozoic ; Pennsylvanian ; sedimentary rocks ; Sediments ; South China Block ; Stratigraphy ; Subsystems ; Time ; Vertebrata ; Windows (intervals)</subject><ispartof>Geology (Boulder), 2019, Vol.47 (1), p.83-86</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</citedby><cites>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G45461.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wu Huaichun, Wu Huaichun</creatorcontrib><creatorcontrib>Fang Qiang, Fang Qiang</creatorcontrib><creatorcontrib>Wang Xiangdong, Wang Xiangdong</creatorcontrib><creatorcontrib>Hinnov, Linda A</creatorcontrib><creatorcontrib>Qi Yuping, Qi Yuping</creatorcontrib><creatorcontrib>Shen Shuzhong, Shen Shuzhong</creatorcontrib><creatorcontrib>Yang Tianshui, Yang Tianshui</creatorcontrib><creatorcontrib>Li Haiyan, Li Haiyan</creatorcontrib><creatorcontrib>Chen Jitao, Chen Jitao</creatorcontrib><creatorcontrib>Zhang Shihong, Zhang Shihong</creatorcontrib><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><title>Geology (Boulder)</title><description>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</description><subject>Asia</subject><subject>biostratigraphy</subject><subject>biozones</subject><subject>Calibration</subject><subject>Carbonates</subject><subject>Carboniferous</subject><subject>China</subject><subject>Chordata</subject><subject>Chronostratigraphy</subject><subject>climate forcing</subject><subject>Conodonta</subject><subject>Correlation analysis</subject><subject>Cycles</subject><subject>cyclic processes</subject><subject>cyclostratigraphy</subject><subject>Eccentric orbits</subject><subject>Ecological succession</subject><subject>Far East</subject><subject>Fourier analysis</subject><subject>Geological time</subject><subject>Geology</subject><subject>Lithology</subject><subject>Magnetic permeability</subject><subject>magnetic properties</subject><subject>Magnetic susceptibility</subject><subject>magnetostratigraphy</subject><subject>microfossils</subject><subject>Mississippian</subject><subject>Mudstone</subject><subject>Obliquity</subject><subject>orbital forcing</subject><subject>paleomagnetism</subject><subject>Paleotethys</subject><subject>Paleozoic</subject><subject>Pennsylvanian</subject><subject>sedimentary rocks</subject><subject>Sediments</subject><subject>South China Block</subject><subject>Stratigraphy</subject><subject>Subsystems</subject><subject>Time</subject><subject>Vertebrata</subject><subject>Windows (intervals)</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkN1q3DAQhUVoINskkEcQ9KZQvNVYsiVfLkubBhIS8nNtZHmc9WJLrmSn-A16nefp0-RJos02EBiYYeY7Z-AQcgZsCcDZ93ORiRyWcEAWUAiepLlKP5EFYwUkMgd-RD6HsGUMRCbVgjyvLH35-48L2i_nJdVh9M66vjW6o2PbIw1xQto4T8cN0mkY0PcujPSqDWFXw9BqG2_eTY8beoPWhrl70na3dc2baK195WzbYGQCvZvDiP377Sa6u-Qex80cBbeou_6EHDa6C3j6vx-Th58_7te_ksvr84v16jIxqcjGRKWVrJgQFZis1nVe50KhNJVKG4VZJWVhjKq51jL2lDesBq6YNiLDXGV1yo_Jl73v4N3vCcNYbt3kbXxZpiAlcMhBRurrnjLeheCxKQff9trPJbByl3i5T7yEiH7bo4_ogmnRGvzjfFd_8GVQlIxJxgv-CiIrhMo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu Huaichun, Wu Huaichun</creator><creator>Fang Qiang, Fang Qiang</creator><creator>Wang Xiangdong, Wang Xiangdong</creator><creator>Hinnov, Linda A</creator><creator>Qi Yuping, Qi Yuping</creator><creator>Shen Shuzhong, Shen Shuzhong</creator><creator>Yang Tianshui, Yang Tianshui</creator><creator>Li Haiyan, Li Haiyan</creator><creator>Chen Jitao, Chen Jitao</creator><creator>Zhang Shihong, Zhang Shihong</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2019</creationdate><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><author>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asia</topic><topic>biostratigraphy</topic><topic>biozones</topic><topic>Calibration</topic><topic>Carbonates</topic><topic>Carboniferous</topic><topic>China</topic><topic>Chordata</topic><topic>Chronostratigraphy</topic><topic>climate forcing</topic><topic>Conodonta</topic><topic>Correlation analysis</topic><topic>Cycles</topic><topic>cyclic processes</topic><topic>cyclostratigraphy</topic><topic>Eccentric orbits</topic><topic>Ecological succession</topic><topic>Far East</topic><topic>Fourier analysis</topic><topic>Geological time</topic><topic>Geology</topic><topic>Lithology</topic><topic>Magnetic permeability</topic><topic>magnetic properties</topic><topic>Magnetic susceptibility</topic><topic>magnetostratigraphy</topic><topic>microfossils</topic><topic>Mississippian</topic><topic>Mudstone</topic><topic>Obliquity</topic><topic>orbital forcing</topic><topic>paleomagnetism</topic><topic>Paleotethys</topic><topic>Paleozoic</topic><topic>Pennsylvanian</topic><topic>sedimentary rocks</topic><topic>Sediments</topic><topic>South China Block</topic><topic>Stratigraphy</topic><topic>Subsystems</topic><topic>Time</topic><topic>Vertebrata</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu Huaichun, Wu Huaichun</creatorcontrib><creatorcontrib>Fang Qiang, Fang Qiang</creatorcontrib><creatorcontrib>Wang Xiangdong, Wang Xiangdong</creatorcontrib><creatorcontrib>Hinnov, Linda A</creatorcontrib><creatorcontrib>Qi Yuping, Qi Yuping</creatorcontrib><creatorcontrib>Shen Shuzhong, Shen Shuzhong</creatorcontrib><creatorcontrib>Yang Tianshui, Yang Tianshui</creatorcontrib><creatorcontrib>Li Haiyan, Li Haiyan</creatorcontrib><creatorcontrib>Chen Jitao, Chen Jitao</creatorcontrib><creatorcontrib>Zhang Shihong, Zhang Shihong</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu Huaichun, Wu Huaichun</au><au>Fang Qiang, Fang Qiang</au><au>Wang Xiangdong, Wang Xiangdong</au><au>Hinnov, Linda A</au><au>Qi Yuping, Qi Yuping</au><au>Shen Shuzhong, Shen Shuzhong</au><au>Yang Tianshui, Yang Tianshui</au><au>Li Haiyan, Li Haiyan</au><au>Chen Jitao, Chen Jitao</au><au>Zhang Shihong, Zhang Shihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</atitle><jtitle>Geology (Boulder)</jtitle><date>2019</date><risdate>2019</risdate><volume>47</volume><issue>1</issue><spage>83</spage><epage>86</epage><pages>83-86</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G45461.1</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2019, Vol.47 (1), p.83-86 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_2177131617 |
source | GeoScienceWorld |
subjects | Asia biostratigraphy biozones Calibration Carbonates Carboniferous China Chordata Chronostratigraphy climate forcing Conodonta Correlation analysis Cycles cyclic processes cyclostratigraphy Eccentric orbits Ecological succession Far East Fourier analysis Geological time Geology Lithology Magnetic permeability magnetic properties Magnetic susceptibility magnetostratigraphy microfossils Mississippian Mudstone Obliquity orbital forcing paleomagnetism Paleotethys Paleozoic Pennsylvanian sedimentary rocks Sediments South China Block Stratigraphy Subsystems Time Vertebrata Windows (intervals) |
title | An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20%E2%88%BC34%20m.y.%20astronomical%20time%20scale%20for%20the%20uppermost%20Mississippian%20through%20Pennsylvanian%20of%20the%20Carboniferous%20System%20of%20the%20Paleo-Tethyan%20Realm&rft.jtitle=Geology%20(Boulder)&rft.au=Wu%20Huaichun,%20Wu%20Huaichun&rft.date=2019&rft.volume=47&rft.issue=1&rft.spage=83&rft.epage=86&rft.pages=83-86&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G45461.1&rft_dat=%3Cproquest_cross%3E2177131617%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2177131617&rft_id=info:pmid/&rfr_iscdi=true |