Loading…

An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm

The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have v...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2019, Vol.47 (1), p.83-86
Main Authors: Wu Huaichun, Wu Huaichun, Fang Qiang, Fang Qiang, Wang Xiangdong, Wang Xiangdong, Hinnov, Linda A, Qi Yuping, Qi Yuping, Shen Shuzhong, Shen Shuzhong, Yang Tianshui, Yang Tianshui, Li Haiyan, Li Haiyan, Chen Jitao, Chen Jitao, Zhang Shihong, Zhang Shihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23
cites cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23
container_end_page 86
container_issue 1
container_start_page 83
container_title Geology (Boulder)
container_volume 47
creator Wu Huaichun, Wu Huaichun
Fang Qiang, Fang Qiang
Wang Xiangdong, Wang Xiangdong
Hinnov, Linda A
Qi Yuping, Qi Yuping
Shen Shuzhong, Shen Shuzhong
Yang Tianshui, Yang Tianshui
Li Haiyan, Li Haiyan
Chen Jitao, Chen Jitao
Zhang Shihong, Zhang Shihong
description The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.
doi_str_mv 10.1130/G45461.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2177131617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2177131617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</originalsourceid><addsrcrecordid>eNpNkN1q3DAQhUVoINskkEcQ9KZQvNVYsiVfLkubBhIS8nNtZHmc9WJLrmSn-A16nefp0-RJos02EBiYYeY7Z-AQcgZsCcDZ93ORiRyWcEAWUAiepLlKP5EFYwUkMgd-RD6HsGUMRCbVgjyvLH35-48L2i_nJdVh9M66vjW6o2PbIw1xQto4T8cN0mkY0PcujPSqDWFXw9BqG2_eTY8beoPWhrl70na3dc2baK195WzbYGQCvZvDiP377Sa6u-Qex80cBbeou_6EHDa6C3j6vx-Th58_7te_ksvr84v16jIxqcjGRKWVrJgQFZis1nVe50KhNJVKG4VZJWVhjKq51jL2lDesBq6YNiLDXGV1yo_Jl73v4N3vCcNYbt3kbXxZpiAlcMhBRurrnjLeheCxKQff9trPJbByl3i5T7yEiH7bo4_ogmnRGvzjfFd_8GVQlIxJxgv-CiIrhMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2177131617</pqid></control><display><type>article</type><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><source>GeoScienceWorld</source><creator>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</creator><creatorcontrib>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</creatorcontrib><description>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G45461.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Asia ; biostratigraphy ; biozones ; Calibration ; Carbonates ; Carboniferous ; China ; Chordata ; Chronostratigraphy ; climate forcing ; Conodonta ; Correlation analysis ; Cycles ; cyclic processes ; cyclostratigraphy ; Eccentric orbits ; Ecological succession ; Far East ; Fourier analysis ; Geological time ; Geology ; Lithology ; Magnetic permeability ; magnetic properties ; Magnetic susceptibility ; magnetostratigraphy ; microfossils ; Mississippian ; Mudstone ; Obliquity ; orbital forcing ; paleomagnetism ; Paleotethys ; Paleozoic ; Pennsylvanian ; sedimentary rocks ; Sediments ; South China Block ; Stratigraphy ; Subsystems ; Time ; Vertebrata ; Windows (intervals)</subject><ispartof>Geology (Boulder), 2019, Vol.47 (1), p.83-86</ispartof><rights>GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</citedby><cites>FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G45461.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,38881,77824</link.rule.ids></links><search><creatorcontrib>Wu Huaichun, Wu Huaichun</creatorcontrib><creatorcontrib>Fang Qiang, Fang Qiang</creatorcontrib><creatorcontrib>Wang Xiangdong, Wang Xiangdong</creatorcontrib><creatorcontrib>Hinnov, Linda A</creatorcontrib><creatorcontrib>Qi Yuping, Qi Yuping</creatorcontrib><creatorcontrib>Shen Shuzhong, Shen Shuzhong</creatorcontrib><creatorcontrib>Yang Tianshui, Yang Tianshui</creatorcontrib><creatorcontrib>Li Haiyan, Li Haiyan</creatorcontrib><creatorcontrib>Chen Jitao, Chen Jitao</creatorcontrib><creatorcontrib>Zhang Shihong, Zhang Shihong</creatorcontrib><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><title>Geology (Boulder)</title><description>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</description><subject>Asia</subject><subject>biostratigraphy</subject><subject>biozones</subject><subject>Calibration</subject><subject>Carbonates</subject><subject>Carboniferous</subject><subject>China</subject><subject>Chordata</subject><subject>Chronostratigraphy</subject><subject>climate forcing</subject><subject>Conodonta</subject><subject>Correlation analysis</subject><subject>Cycles</subject><subject>cyclic processes</subject><subject>cyclostratigraphy</subject><subject>Eccentric orbits</subject><subject>Ecological succession</subject><subject>Far East</subject><subject>Fourier analysis</subject><subject>Geological time</subject><subject>Geology</subject><subject>Lithology</subject><subject>Magnetic permeability</subject><subject>magnetic properties</subject><subject>Magnetic susceptibility</subject><subject>magnetostratigraphy</subject><subject>microfossils</subject><subject>Mississippian</subject><subject>Mudstone</subject><subject>Obliquity</subject><subject>orbital forcing</subject><subject>paleomagnetism</subject><subject>Paleotethys</subject><subject>Paleozoic</subject><subject>Pennsylvanian</subject><subject>sedimentary rocks</subject><subject>Sediments</subject><subject>South China Block</subject><subject>Stratigraphy</subject><subject>Subsystems</subject><subject>Time</subject><subject>Vertebrata</subject><subject>Windows (intervals)</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkN1q3DAQhUVoINskkEcQ9KZQvNVYsiVfLkubBhIS8nNtZHmc9WJLrmSn-A16nefp0-RJos02EBiYYeY7Z-AQcgZsCcDZ93ORiRyWcEAWUAiepLlKP5EFYwUkMgd-RD6HsGUMRCbVgjyvLH35-48L2i_nJdVh9M66vjW6o2PbIw1xQto4T8cN0mkY0PcujPSqDWFXw9BqG2_eTY8beoPWhrl70na3dc2baK195WzbYGQCvZvDiP377Sa6u-Qex80cBbeou_6EHDa6C3j6vx-Th58_7te_ksvr84v16jIxqcjGRKWVrJgQFZis1nVe50KhNJVKG4VZJWVhjKq51jL2lDesBq6YNiLDXGV1yo_Jl73v4N3vCcNYbt3kbXxZpiAlcMhBRurrnjLeheCxKQff9trPJbByl3i5T7yEiH7bo4_ogmnRGvzjfFd_8GVQlIxJxgv-CiIrhMo</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu Huaichun, Wu Huaichun</creator><creator>Fang Qiang, Fang Qiang</creator><creator>Wang Xiangdong, Wang Xiangdong</creator><creator>Hinnov, Linda A</creator><creator>Qi Yuping, Qi Yuping</creator><creator>Shen Shuzhong, Shen Shuzhong</creator><creator>Yang Tianshui, Yang Tianshui</creator><creator>Li Haiyan, Li Haiyan</creator><creator>Chen Jitao, Chen Jitao</creator><creator>Zhang Shihong, Zhang Shihong</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>2019</creationdate><title>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</title><author>Wu Huaichun, Wu Huaichun ; Fang Qiang, Fang Qiang ; Wang Xiangdong, Wang Xiangdong ; Hinnov, Linda A ; Qi Yuping, Qi Yuping ; Shen Shuzhong, Shen Shuzhong ; Yang Tianshui, Yang Tianshui ; Li Haiyan, Li Haiyan ; Chen Jitao, Chen Jitao ; Zhang Shihong, Zhang Shihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asia</topic><topic>biostratigraphy</topic><topic>biozones</topic><topic>Calibration</topic><topic>Carbonates</topic><topic>Carboniferous</topic><topic>China</topic><topic>Chordata</topic><topic>Chronostratigraphy</topic><topic>climate forcing</topic><topic>Conodonta</topic><topic>Correlation analysis</topic><topic>Cycles</topic><topic>cyclic processes</topic><topic>cyclostratigraphy</topic><topic>Eccentric orbits</topic><topic>Ecological succession</topic><topic>Far East</topic><topic>Fourier analysis</topic><topic>Geological time</topic><topic>Geology</topic><topic>Lithology</topic><topic>Magnetic permeability</topic><topic>magnetic properties</topic><topic>Magnetic susceptibility</topic><topic>magnetostratigraphy</topic><topic>microfossils</topic><topic>Mississippian</topic><topic>Mudstone</topic><topic>Obliquity</topic><topic>orbital forcing</topic><topic>paleomagnetism</topic><topic>Paleotethys</topic><topic>Paleozoic</topic><topic>Pennsylvanian</topic><topic>sedimentary rocks</topic><topic>Sediments</topic><topic>South China Block</topic><topic>Stratigraphy</topic><topic>Subsystems</topic><topic>Time</topic><topic>Vertebrata</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu Huaichun, Wu Huaichun</creatorcontrib><creatorcontrib>Fang Qiang, Fang Qiang</creatorcontrib><creatorcontrib>Wang Xiangdong, Wang Xiangdong</creatorcontrib><creatorcontrib>Hinnov, Linda A</creatorcontrib><creatorcontrib>Qi Yuping, Qi Yuping</creatorcontrib><creatorcontrib>Shen Shuzhong, Shen Shuzhong</creatorcontrib><creatorcontrib>Yang Tianshui, Yang Tianshui</creatorcontrib><creatorcontrib>Li Haiyan, Li Haiyan</creatorcontrib><creatorcontrib>Chen Jitao, Chen Jitao</creatorcontrib><creatorcontrib>Zhang Shihong, Zhang Shihong</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu Huaichun, Wu Huaichun</au><au>Fang Qiang, Fang Qiang</au><au>Wang Xiangdong, Wang Xiangdong</au><au>Hinnov, Linda A</au><au>Qi Yuping, Qi Yuping</au><au>Shen Shuzhong, Shen Shuzhong</au><au>Yang Tianshui, Yang Tianshui</au><au>Li Haiyan, Li Haiyan</au><au>Chen Jitao, Chen Jitao</au><au>Zhang Shihong, Zhang Shihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm</atitle><jtitle>Geology (Boulder)</jtitle><date>2019</date><risdate>2019</risdate><volume>47</volume><issue>1</issue><spage>83</spage><epage>86</epage><pages>83-86</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>The Naqing section in South China is a representative carbonate slope succession in the eastern Paleo-Tethyan realm. It encompasses four global stratotype section and point (GSSP) candidates for the Carboniferous Period. High-resolution magnetic susceptibility measurements through the section have variations that correlate with lithological cycles of lime mudstone, wackestone, and packstone. Astronomical calibration of ∼3 m sedimentary cycles to a 405 k.y. orbital eccentricity cycle period aligns other significant, shorter sedimentary cycles to periods recognizable as short orbital eccentricity (136 k.y., 122 k.y., and 96 k.y.), obliquity (31 k.y.), and precession (22.9 k.y. and 19.7 k.y.). The orbital eccentricity has long-period modulations with 2.4 m.y., 1.6 m.y., and 1.2 m.y. periods, and the obliquity has a 1.2 m.y. modulation cycle. The astronomical calibration indicates durations of 7.6 m.y., 8.1 m.y., 8.5 m.y., 2.87 m.y., and 4.83 m.y. for the Serpukhovian, Bashkirian, Moscovian, Kasimovian, and Gzhelian Stages, respectively. The calibrated durations of the 25 conodont zones collectively indicate a 33.9 m.y. time scale. Biochronological correlation of the Paleo-Tethyan and pan-Euramerican records significantly refines the global chronostratigraphy for the Serpukhovian Stage and the Pennsylvanian subsystem. This new Paleo-Tethyan astronomical time scale opens a new window for understanding the late Paleozoic icehouse world.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G45461.1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2019, Vol.47 (1), p.83-86
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_2177131617
source GeoScienceWorld
subjects Asia
biostratigraphy
biozones
Calibration
Carbonates
Carboniferous
China
Chordata
Chronostratigraphy
climate forcing
Conodonta
Correlation analysis
Cycles
cyclic processes
cyclostratigraphy
Eccentric orbits
Ecological succession
Far East
Fourier analysis
Geological time
Geology
Lithology
Magnetic permeability
magnetic properties
Magnetic susceptibility
magnetostratigraphy
microfossils
Mississippian
Mudstone
Obliquity
orbital forcing
paleomagnetism
Paleotethys
Paleozoic
Pennsylvanian
sedimentary rocks
Sediments
South China Block
Stratigraphy
Subsystems
Time
Vertebrata
Windows (intervals)
title An ∼34 m.y. astronomical time scale for the uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20%E2%88%BC34%20m.y.%20astronomical%20time%20scale%20for%20the%20uppermost%20Mississippian%20through%20Pennsylvanian%20of%20the%20Carboniferous%20System%20of%20the%20Paleo-Tethyan%20Realm&rft.jtitle=Geology%20(Boulder)&rft.au=Wu%20Huaichun,%20Wu%20Huaichun&rft.date=2019&rft.volume=47&rft.issue=1&rft.spage=83&rft.epage=86&rft.pages=83-86&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G45461.1&rft_dat=%3Cproquest_cross%3E2177131617%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-82b7b044b1c5dad6d648e7cb82f8e5b779cc8d3aa7cc823f0d1380ac45e685d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2177131617&rft_id=info:pmid/&rfr_iscdi=true