Loading…

Global Estimates of Inorganic Nitrogen Deposition Across Four Decades

Atmospheric deposition of inorganic nitrogen is critical to the function of ecosystems and elemental cycles. During the industrial period, humans have doubled the amount of inorganic nitrogen in the biosphere and radically altered rates of atmospheric nitrogen deposition. Despite this rapid change,...

Full description

Saved in:
Bibliographic Details
Published in:Global biogeochemical cycles 2019-01, Vol.33 (1), p.100-107
Main Authors: Ackerman, Daniel, Millet, Dylan B., Chen, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atmospheric deposition of inorganic nitrogen is critical to the function of ecosystems and elemental cycles. During the industrial period, humans have doubled the amount of inorganic nitrogen in the biosphere and radically altered rates of atmospheric nitrogen deposition. Despite this rapid change, estimates of global nitrogen deposition patterns generally have low, centennial‐scale temporal resolution. Lack of information on annual‐ to decadal‐scale changes in global nitrogen deposition makes it difficult for scientists researching questions on these finer timescales to contextualize their work within the global nitrogen cycle. Here we use the GEOS‐Chem Chemical Transport Model to estimate wet and dry deposition of inorganic nitrogen globally at a spatial resolution of 2° × 2.5° for 12 individual years in the period from 1984 to 2016. During this time, we found an 8% increase in global inorganic nitrogen deposition from 86.6 to 93.6 TgN/year, a trend that comprised a balance of variable regional patterns. For example, inorganic nitrogen deposition increased in areas including East Asia and Southern Brazil, while inorganic nitrogen deposition declined in areas including Europe. Further, we found a global increase in the percentage of inorganic nitrogen deposited in chemically reduced forms from 30% to 35%, and this trend was largely driven by strong regional increases in the proportion of chemically reduced nitrogen deposited over the United States. This study provides spatially explicit estimates of inorganic nitrogen deposition over the last four decades and improves our understanding of short‐term human impacts on the global nitrogen cycle. Key Points We simulated global wet and dry deposition of inorganic nitrogen for 12 individual years in the period from 1984 to 2016 Global inorganic nitrogen deposition increased by 8% during the period simulated, but trends varied regionally The proportion of inorganic nitrogen deposited in chemically reduced forms also increased during the simulated period
ISSN:0886-6236
1944-9224
DOI:10.1029/2018GB005990