Loading…
Marker-Independent In Situ Quantitative Assessment of Residual Cryoprotectants in Cardiac Tissues
Cryomedium toxicity is a major safety concern when transplanting cryopreserved organs. Therefore, thorough removal of potentially toxic cryoprotective agents (CPAs) is required before transplantation. CPAs such as dimethyl-sulfoxide (DMSO), propylene glycol (PG), and formamide (FMD), routinely emplo...
Saved in:
Published in: | Analytical chemistry (Washington) 2019-02, Vol.91 (3), p.2266-2272 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cryomedium toxicity is a major safety concern when transplanting cryopreserved organs. Therefore, thorough removal of potentially toxic cryoprotective agents (CPAs) is required before transplantation. CPAs such as dimethyl-sulfoxide (DMSO), propylene glycol (PG), and formamide (FMD), routinely employed in ice-free cryopreservation (IFC), have advantages in long-term preservation of tissue structures compared with conventional cryopreservation employing lower CPA concentrations. This study evaluated the impact of potential residual CPAs on human cardiac valves. Raman microspectroscopy and Raman imaging were established as nondestructive marker-independent techniques for in situ quantitative assessment of CPA residues in IFC valve tissues. In detail, IFC valve leaflets and supernatants of the washing solutions were analyzed to determine the washing efficiency. A calibration model was developed according to the CPA’s characteristic Raman signals to quantify DMSO, PG and FMD concentrations in the supernatants. Single point Raman measurements were performed on the intact tissues to analyze penetration properties. In addition, Raman imaging was utilized to visualize potential CPA residues. Our data showed that washing decreased the CPA concentration in the final washing solution by 99%, and no residues could be detected in the washed tissues, validating the multistep CPA removal protocol routinely used for IFC valves. Raman analysis of unwashed tissues showed different permeation characteristics depending on each CPA and their concentration. Our results demonstrate a great potential of Raman microspectroscopy and Raman imaging as marker-independent in situ tissue quality control tools with the ability to assess the presence and concentration of different chemical agents or drugs in preimplantation tissues. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.8b04861 |