Loading…

Ultrafast Microfluidic Mixer and Freeze-Quenching Device

The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fl...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2003-10, Vol.75 (20), p.5381-5386
Main Authors: Lin, Yu, Gerfen, Gary J, Rousseau, Denis L, Yeh, Syun-Ru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The freeze-quenching technique is extremely useful for trapping meta-stable intermediates populated during fast chemical or biochemical reactions. The application of this technique, however, is limited by the long mixing time of conventional solution mixers and the slow freezing time of cryogenic fluids. To overcome these problems, we have designed and tested a novel microfluidic silicon mixer equipped with a new freeze-quenching device, with which reactions can be followed down to 50 μs. In the microfluidic silicon mixer, seven 10-μm-diameter vertical pillars are arranged perpendicular to the flow direction and in a staggered fashion in the 450-pL mixing chamber to enhance turbulent mixing. The mixed-solution jet, with a cross section of 10 μm × 100 μm, exits from the microfluidic silicon mixer with a linear flow velocity of 20 m/s. It instantaneously freezes on one of two rotating copper wheels maintained at 77 K and is subsequently ground into an ultrafine powder. The ultrafine frozen powder exhibits excellent spectral quality and high packing factor and can be readily transferred between spectroscopic observation cells. The microfluidic mixer was tested by the reaction between azide and myoglobin at pH 5.0. It was found that complete mixing was achieved within the mixing dead time of the mixer (20 μs), and the first observable point for this coupled device was determined to be 50 μs, which is ∼2 orders of magnitude faster than commercially available instruments.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0346205