Loading…
Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance
Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give inf...
Saved in:
Published in: | Canadian journal of chemical engineering 2019-03, Vol.97 (3), p.628-635 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3 |
container_end_page | 635 |
container_issue | 3 |
container_start_page | 628 |
container_title | Canadian journal of chemical engineering |
container_volume | 97 |
creator | Rigamonti, Marco G. Gatti, Francesco G. Patience, Gregory S. |
description | Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz). |
doi_str_mv | 10.1002/cjce.23409 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178710506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178710506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX_4KCN6HzJenaxpuU6pRNQRS8hSZ53Tq6dCYduv_ezHr29HiP7_36CLmkMKEA7EavNU4YT0AckREVXMRAxccxGQFAHifAk1Ny5v06pAwSOiKz8nuLrtmg7as2WmC_6oyPGhsVK9w0OtRKu2wsBsYub6PnnW6xctGiWlrsGx29ou9sZTWek5O6aj1e_MUxeb8v34pZPH95eCzu5rHm4ZRYGRRTldGccQFacW6UYrpKMKeJMmnN84RzyMFgDQyZSbVWmTBUUVVPU4Z8TK6GuVvXfe7Q93Ld7ZwNKyWjWZ5RmEIaqOuB0q7z3mEtt-HJyu0lBXkwJQ-m5K-pANMB_mpa3P9DyuKpKIeeHz1oavs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178710506</pqid></control><display><type>article</type><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><source>Wiley</source><creator>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</creator><creatorcontrib>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</creatorcontrib><description>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.23409</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Analytical method ; Aqueous solutions ; benchtop NMR ; bibliometric network ; Chemical bonds ; Chemical engineering ; Chemical sensors ; Chemoreceptors ; Cluster analysis ; cost ; Crystal structure ; Density functional theory ; detection limit ; Drug delivery systems ; Error detection ; Experimental methods ; Functional groups ; Ionic liquids ; Magnetic induction ; Magnets ; Molecular structure ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclei (nuclear physics) ; Organic chemistry ; Polymers ; Radio frequency ; Reaction kinetics ; Research methodology ; Stability analysis ; X-ray diffraction</subject><ispartof>Canadian journal of chemical engineering, 2019-03, Vol.97 (3), p.628-635</ispartof><rights>2016 Canadian Society for Chemical Engineering</rights><rights>2019 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</citedby><cites>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rigamonti, Marco G.</creatorcontrib><creatorcontrib>Gatti, Francesco G.</creatorcontrib><creatorcontrib>Patience, Gregory S.</creatorcontrib><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><title>Canadian journal of chemical engineering</title><description>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</description><subject>Analytical method</subject><subject>Aqueous solutions</subject><subject>benchtop NMR</subject><subject>bibliometric network</subject><subject>Chemical bonds</subject><subject>Chemical engineering</subject><subject>Chemical sensors</subject><subject>Chemoreceptors</subject><subject>Cluster analysis</subject><subject>cost</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>detection limit</subject><subject>Drug delivery systems</subject><subject>Error detection</subject><subject>Experimental methods</subject><subject>Functional groups</subject><subject>Ionic liquids</subject><subject>Magnetic induction</subject><subject>Magnets</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclei (nuclear physics)</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Radio frequency</subject><subject>Reaction kinetics</subject><subject>Research methodology</subject><subject>Stability analysis</subject><subject>X-ray diffraction</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKcX_4KCN6HzJenaxpuU6pRNQRS8hSZ53Tq6dCYduv_ezHr29HiP7_36CLmkMKEA7EavNU4YT0AckREVXMRAxccxGQFAHifAk1Ny5v06pAwSOiKz8nuLrtmg7as2WmC_6oyPGhsVK9w0OtRKu2wsBsYub6PnnW6xctGiWlrsGx29ou9sZTWek5O6aj1e_MUxeb8v34pZPH95eCzu5rHm4ZRYGRRTldGccQFacW6UYrpKMKeJMmnN84RzyMFgDQyZSbVWmTBUUVVPU4Z8TK6GuVvXfe7Q93Ld7ZwNKyWjWZ5RmEIaqOuB0q7z3mEtt-HJyu0lBXkwJQ-m5K-pANMB_mpa3P9DyuKpKIeeHz1oavs</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Rigamonti, Marco G.</creator><creator>Gatti, Francesco G.</creator><creator>Patience, Gregory S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201903</creationdate><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><author>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical method</topic><topic>Aqueous solutions</topic><topic>benchtop NMR</topic><topic>bibliometric network</topic><topic>Chemical bonds</topic><topic>Chemical engineering</topic><topic>Chemical sensors</topic><topic>Chemoreceptors</topic><topic>Cluster analysis</topic><topic>cost</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>detection limit</topic><topic>Drug delivery systems</topic><topic>Error detection</topic><topic>Experimental methods</topic><topic>Functional groups</topic><topic>Ionic liquids</topic><topic>Magnetic induction</topic><topic>Magnets</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclei (nuclear physics)</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Radio frequency</topic><topic>Reaction kinetics</topic><topic>Research methodology</topic><topic>Stability analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigamonti, Marco G.</creatorcontrib><creatorcontrib>Gatti, Francesco G.</creatorcontrib><creatorcontrib>Patience, Gregory S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rigamonti, Marco G.</au><au>Gatti, Francesco G.</au><au>Patience, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2019-03</date><risdate>2019</risdate><volume>97</volume><issue>3</issue><spage>628</spage><epage>635</epage><pages>628-635</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cjce.23409</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4034 |
ispartof | Canadian journal of chemical engineering, 2019-03, Vol.97 (3), p.628-635 |
issn | 0008-4034 1939-019X |
language | eng |
recordid | cdi_proquest_journals_2178710506 |
source | Wiley |
subjects | Analytical method Aqueous solutions benchtop NMR bibliometric network Chemical bonds Chemical engineering Chemical sensors Chemoreceptors Cluster analysis cost Crystal structure Density functional theory detection limit Drug delivery systems Error detection Experimental methods Functional groups Ionic liquids Magnetic induction Magnets Molecular structure NMR NMR spectroscopy Nuclear magnetic resonance Nuclei (nuclear physics) Organic chemistry Polymers Radio frequency Reaction kinetics Research methodology Stability analysis X-ray diffraction |
title | Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Methods%20in%20Chemical%20Engineering:%20Nuclear%20Magnetic%20Resonance&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Rigamonti,%20Marco%20G.&rft.date=2019-03&rft.volume=97&rft.issue=3&rft.spage=628&rft.epage=635&rft.pages=628-635&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.23409&rft_dat=%3Cproquest_cross%3E2178710506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178710506&rft_id=info:pmid/&rfr_iscdi=true |