Loading…

Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give inf...

Full description

Saved in:
Bibliographic Details
Published in:Canadian journal of chemical engineering 2019-03, Vol.97 (3), p.628-635
Main Authors: Rigamonti, Marco G., Gatti, Francesco G., Patience, Gregory S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3
cites cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3
container_end_page 635
container_issue 3
container_start_page 628
container_title Canadian journal of chemical engineering
container_volume 97
creator Rigamonti, Marco G.
Gatti, Francesco G.
Patience, Gregory S.
description Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).
doi_str_mv 10.1002/cjce.23409
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2178710506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178710506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX_4KCN6HzJenaxpuU6pRNQRS8hSZ53Tq6dCYduv_ezHr29HiP7_36CLmkMKEA7EavNU4YT0AckREVXMRAxccxGQFAHifAk1Ny5v06pAwSOiKz8nuLrtmg7as2WmC_6oyPGhsVK9w0OtRKu2wsBsYub6PnnW6xctGiWlrsGx29ou9sZTWek5O6aj1e_MUxeb8v34pZPH95eCzu5rHm4ZRYGRRTldGccQFacW6UYrpKMKeJMmnN84RzyMFgDQyZSbVWmTBUUVVPU4Z8TK6GuVvXfe7Q93Ld7ZwNKyWjWZ5RmEIaqOuB0q7z3mEtt-HJyu0lBXkwJQ-m5K-pANMB_mpa3P9DyuKpKIeeHz1oavs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178710506</pqid></control><display><type>article</type><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><source>Wiley</source><creator>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</creator><creatorcontrib>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</creatorcontrib><description>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.23409</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Analytical method ; Aqueous solutions ; benchtop NMR ; bibliometric network ; Chemical bonds ; Chemical engineering ; Chemical sensors ; Chemoreceptors ; Cluster analysis ; cost ; Crystal structure ; Density functional theory ; detection limit ; Drug delivery systems ; Error detection ; Experimental methods ; Functional groups ; Ionic liquids ; Magnetic induction ; Magnets ; Molecular structure ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Nuclei (nuclear physics) ; Organic chemistry ; Polymers ; Radio frequency ; Reaction kinetics ; Research methodology ; Stability analysis ; X-ray diffraction</subject><ispartof>Canadian journal of chemical engineering, 2019-03, Vol.97 (3), p.628-635</ispartof><rights>2016 Canadian Society for Chemical Engineering</rights><rights>2019 Canadian Society for Chemical Engineering</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</citedby><cites>FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rigamonti, Marco G.</creatorcontrib><creatorcontrib>Gatti, Francesco G.</creatorcontrib><creatorcontrib>Patience, Gregory S.</creatorcontrib><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><title>Canadian journal of chemical engineering</title><description>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</description><subject>Analytical method</subject><subject>Aqueous solutions</subject><subject>benchtop NMR</subject><subject>bibliometric network</subject><subject>Chemical bonds</subject><subject>Chemical engineering</subject><subject>Chemical sensors</subject><subject>Chemoreceptors</subject><subject>Cluster analysis</subject><subject>cost</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>detection limit</subject><subject>Drug delivery systems</subject><subject>Error detection</subject><subject>Experimental methods</subject><subject>Functional groups</subject><subject>Ionic liquids</subject><subject>Magnetic induction</subject><subject>Magnets</subject><subject>Molecular structure</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclei (nuclear physics)</subject><subject>Organic chemistry</subject><subject>Polymers</subject><subject>Radio frequency</subject><subject>Reaction kinetics</subject><subject>Research methodology</subject><subject>Stability analysis</subject><subject>X-ray diffraction</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKcX_4KCN6HzJenaxpuU6pRNQRS8hSZ53Tq6dCYduv_ezHr29HiP7_36CLmkMKEA7EavNU4YT0AckREVXMRAxccxGQFAHifAk1Ny5v06pAwSOiKz8nuLrtmg7as2WmC_6oyPGhsVK9w0OtRKu2wsBsYub6PnnW6xctGiWlrsGx29ou9sZTWek5O6aj1e_MUxeb8v34pZPH95eCzu5rHm4ZRYGRRTldGccQFacW6UYrpKMKeJMmnN84RzyMFgDQyZSbVWmTBUUVVPU4Z8TK6GuVvXfe7Q93Ld7ZwNKyWjWZ5RmEIaqOuB0q7z3mEtt-HJyu0lBXkwJQ-m5K-pANMB_mpa3P9DyuKpKIeeHz1oavs</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Rigamonti, Marco G.</creator><creator>Gatti, Francesco G.</creator><creator>Patience, Gregory S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201903</creationdate><title>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</title><author>Rigamonti, Marco G. ; Gatti, Francesco G. ; Patience, Gregory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analytical method</topic><topic>Aqueous solutions</topic><topic>benchtop NMR</topic><topic>bibliometric network</topic><topic>Chemical bonds</topic><topic>Chemical engineering</topic><topic>Chemical sensors</topic><topic>Chemoreceptors</topic><topic>Cluster analysis</topic><topic>cost</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>detection limit</topic><topic>Drug delivery systems</topic><topic>Error detection</topic><topic>Experimental methods</topic><topic>Functional groups</topic><topic>Ionic liquids</topic><topic>Magnetic induction</topic><topic>Magnets</topic><topic>Molecular structure</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclei (nuclear physics)</topic><topic>Organic chemistry</topic><topic>Polymers</topic><topic>Radio frequency</topic><topic>Reaction kinetics</topic><topic>Research methodology</topic><topic>Stability analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigamonti, Marco G.</creatorcontrib><creatorcontrib>Gatti, Francesco G.</creatorcontrib><creatorcontrib>Patience, Gregory S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rigamonti, Marco G.</au><au>Gatti, Francesco G.</au><au>Patience, Gregory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance</atitle><jtitle>Canadian journal of chemical engineering</jtitle><date>2019-03</date><risdate>2019</risdate><volume>97</volume><issue>3</issue><spage>628</spage><epage>635</epage><pages>628-635</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><abstract>Nuclear magnetic resonance (NMR) spectroscopy measures free induction decay (FID) signals that atomic nuclei emit when excited by a radio‐frequency (RF) pulse in a static magnetic field. The Fourier‐transformed spectrum shows chemically shifted peaks, area intensity, and multiplicity, which give information on molecular structure, bonds, functional groups, and purity. Web of Science Core Collection indexed 46 000 articles that mentioned NMR in 2016 and 2017. The VosViewer software grouped the research into 5 clusters: solid‐state analysis including metabolomics; biology with in‐vitro and antibacterial applications; coupled analytical techniques to identify crystal structure for which x‐ray diffraction and density functional theory figure prominently; liquid‐state analysis for polymers, aqueous solutions, nano‐particles, and drug delivery; and chemosensors. Researchers publishing in The Canadian Journal of Chemical Engineering focus most on: liquid‐state NMR to characterize polymers, branching, and monomers; quantify conformation, reaction kinetics, and equilibrium; and assess surfactant stability, ionic liquids, and composition. We introduce the theory behind NMR spectroscopy and common applications in chemistry and material science. We highlight the strength and limitations, sources of error, and the detection limit for this analytical technique, as manufacturers develop massive magnets for high‐resolution spectra (1 GHz), and benchtop NMR for real‐time, in‐situ analysis (80 MHz).</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cjce.23409</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2019-03, Vol.97 (3), p.628-635
issn 0008-4034
1939-019X
language eng
recordid cdi_proquest_journals_2178710506
source Wiley
subjects Analytical method
Aqueous solutions
benchtop NMR
bibliometric network
Chemical bonds
Chemical engineering
Chemical sensors
Chemoreceptors
Cluster analysis
cost
Crystal structure
Density functional theory
detection limit
Drug delivery systems
Error detection
Experimental methods
Functional groups
Ionic liquids
Magnetic induction
Magnets
Molecular structure
NMR
NMR spectroscopy
Nuclear magnetic resonance
Nuclei (nuclear physics)
Organic chemistry
Polymers
Radio frequency
Reaction kinetics
Research methodology
Stability analysis
X-ray diffraction
title Experimental Methods in Chemical Engineering: Nuclear Magnetic Resonance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A32%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Methods%20in%20Chemical%20Engineering:%20Nuclear%20Magnetic%20Resonance&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Rigamonti,%20Marco%20G.&rft.date=2019-03&rft.volume=97&rft.issue=3&rft.spage=628&rft.epage=635&rft.pages=628-635&rft.issn=0008-4034&rft.eissn=1939-019X&rft_id=info:doi/10.1002/cjce.23409&rft_dat=%3Cproquest_cross%3E2178710506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3019-bde95b7182390cb33dbb2ca4e814bd6f38433080def02e2d6ccb79d1b1bf562e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178710506&rft_id=info:pmid/&rfr_iscdi=true