Loading…
TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA
Large volumes of data have raised the problem of their use from the exploitation up to the result, and the Data Mining technology uses complex search methods that aim to identify some patterns and clusters of data, some trends in the consumers' behavior that can be used to anticipate their futu...
Saved in:
Published in: | Knowledge horizons : economics 2016-10, Vol.8 (4), p.44-47 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 47 |
container_issue | 4 |
container_start_page | 44 |
container_title | Knowledge horizons : economics |
container_volume | 8 |
creator | Stancu, Ana-Maria Ramona Mocanu, Mihaela |
description | Large volumes of data have raised the problem of their use from the exploitation up to the result, and the Data Mining technology uses complex search methods that aim to identify some patterns and clusters of data, some trends in the consumers' behavior that can be used to anticipate their future behavior. Methods for knowledge extraction from data represent classes of problems that are subject to different solving algorithms. Of all algorithms, the current paper is dealing with decision trees and we will present a classifying application on which we will study the decision trees. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2178933984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2178933984</sourcerecordid><originalsourceid>FETCH-proquest_journals_21789339843</originalsourceid><addsrcrecordid>eNqNi98KgjAchUcUJOU7_KBrYbqa7nLo_EPT0ZzVnXRhFxJZrt4_iR6gq3P4zndmyAkwpZ6PqT__duZhRoIlcq3tMcY-oTQIdw7SRsR5VRwaUQOvEuAyU7oweVlDU4sEUqVhX6mTFEkmQJyN5rEpVAWpViVIrid6VLIpp79KIeGGr9HiernZzv3lCm1SYeLce4zD893ZV9sP7_E-TW3ghxEjhEVb8p_1ATXdOXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2178933984</pqid></control><display><type>article</type><title>TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA</title><source>ABI/INFORM Global</source><creator>Stancu, Ana-Maria Ramona ; Mocanu, Mihaela</creator><creatorcontrib>Stancu, Ana-Maria Ramona ; Mocanu, Mihaela</creatorcontrib><description>Large volumes of data have raised the problem of their use from the exploitation up to the result, and the Data Mining technology uses complex search methods that aim to identify some patterns and clusters of data, some trends in the consumers' behavior that can be used to anticipate their future behavior. Methods for knowledge extraction from data represent classes of problems that are subject to different solving algorithms. Of all algorithms, the current paper is dealing with decision trees and we will present a classifying application on which we will study the decision trees.</description><identifier>ISSN: 2069-0932</identifier><identifier>EISSN: 2066-1061</identifier><language>eng</language><publisher>Bucharest: Dimitrie Cantemir Christian University</publisher><subject>Algorithms ; Automation ; Banking ; Classification ; Data analysis ; Data mining ; Decision making ; Decision trees ; Entropy ; Trends</subject><ispartof>Knowledge horizons : economics, 2016-10, Vol.8 (4), p.44-47</ispartof><rights>Copyright Dimitrie Cantemir Christian University 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2178933984/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2178933984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Stancu, Ana-Maria Ramona</creatorcontrib><creatorcontrib>Mocanu, Mihaela</creatorcontrib><title>TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA</title><title>Knowledge horizons : economics</title><description>Large volumes of data have raised the problem of their use from the exploitation up to the result, and the Data Mining technology uses complex search methods that aim to identify some patterns and clusters of data, some trends in the consumers' behavior that can be used to anticipate their future behavior. Methods for knowledge extraction from data represent classes of problems that are subject to different solving algorithms. Of all algorithms, the current paper is dealing with decision trees and we will present a classifying application on which we will study the decision trees.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Banking</subject><subject>Classification</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Entropy</subject><subject>Trends</subject><issn>2069-0932</issn><issn>2066-1061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNi98KgjAchUcUJOU7_KBrYbqa7nLo_EPT0ZzVnXRhFxJZrt4_iR6gq3P4zndmyAkwpZ6PqT__duZhRoIlcq3tMcY-oTQIdw7SRsR5VRwaUQOvEuAyU7oweVlDU4sEUqVhX6mTFEkmQJyN5rEpVAWpViVIrid6VLIpp79KIeGGr9HiernZzv3lCm1SYeLce4zD893ZV9sP7_E-TW3ghxEjhEVb8p_1ATXdOXE</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Stancu, Ana-Maria Ramona</creator><creator>Mocanu, Mihaela</creator><general>Dimitrie Cantemir Christian University</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20161001</creationdate><title>TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA</title><author>Stancu, Ana-Maria Ramona ; Mocanu, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21789339843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Banking</topic><topic>Classification</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Entropy</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stancu, Ana-Maria Ramona</creatorcontrib><creatorcontrib>Mocanu, Mihaela</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge horizons : economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stancu, Ana-Maria Ramona</au><au>Mocanu, Mihaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA</atitle><jtitle>Knowledge horizons : economics</jtitle><date>2016-10-01</date><risdate>2016</risdate><volume>8</volume><issue>4</issue><spage>44</spage><epage>47</epage><pages>44-47</pages><issn>2069-0932</issn><eissn>2066-1061</eissn><abstract>Large volumes of data have raised the problem of their use from the exploitation up to the result, and the Data Mining technology uses complex search methods that aim to identify some patterns and clusters of data, some trends in the consumers' behavior that can be used to anticipate their future behavior. Methods for knowledge extraction from data represent classes of problems that are subject to different solving algorithms. Of all algorithms, the current paper is dealing with decision trees and we will present a classifying application on which we will study the decision trees.</abstract><cop>Bucharest</cop><pub>Dimitrie Cantemir Christian University</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2069-0932 |
ispartof | Knowledge horizons : economics, 2016-10, Vol.8 (4), p.44-47 |
issn | 2069-0932 2066-1061 |
language | eng |
recordid | cdi_proquest_journals_2178933984 |
source | ABI/INFORM Global |
subjects | Algorithms Automation Banking Classification Data analysis Data mining Decision making Decision trees Entropy Trends |
title | TECHNIQUES AND ALGORITHMS USED FOR KNOWLEDGE EXTRACTION FROM LARGE VOLUMES OF DATA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TECHNIQUES%20AND%20ALGORITHMS%20USED%20FOR%20KNOWLEDGE%20EXTRACTION%20FROM%20LARGE%20VOLUMES%20OF%20DATA&rft.jtitle=Knowledge%20horizons%20:%20economics&rft.au=Stancu,%20Ana-Maria%20Ramona&rft.date=2016-10-01&rft.volume=8&rft.issue=4&rft.spage=44&rft.epage=47&rft.pages=44-47&rft.issn=2069-0932&rft.eissn=2066-1061&rft_id=info:doi/&rft_dat=%3Cproquest%3E2178933984%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21789339843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2178933984&rft_id=info:pmid/&rfr_iscdi=true |