Loading…

Engineering robust metal–phenolic network membranes for uranium extraction from seawater

Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 )....

Full description

Saved in:
Bibliographic Details
Published in:Energy & environmental science 2019-02, Vol.12 (2), p.607-614
Main Authors: Luo, Wei, Xiao, Gao, Tian, Fan, Richardson, Joseph J., Wang, Yaping, Zhou, Jianfei, Guo, Junling, Liao, Xuepin, Shi, Bi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463
cites cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463
container_end_page 614
container_issue 2
container_start_page 607
container_title Energy & environmental science
container_volume 12
creator Luo, Wei
Xiao, Gao
Tian, Fan
Richardson, Joseph J.
Wang, Yaping
Zhou, Jianfei
Guo, Junling
Liao, Xuepin
Shi, Bi
description Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 ). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.
doi_str_mv 10.1039/C8EE01438H
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2179097988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179097988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</originalsourceid><addsrcrecordid>eNpFUM1KxDAYDKLgunrxCQLehGq-pPk7ylJ3hQUvevFS0jZdu26TNUlZvfkOvqFPYmUVTzMwwwwzCJ0DuQLC9PVMFQWBnKnFAZqA5HnGJRGHf1xoeoxOYlwTIiiReoKeCrfqnLWhcyscfDXEhHubzObr43P7bJ3fdDV2Nu18eBmFvgrG2YhbH_Aw0m7osX1LwdSp8w63wfc4WrMzyYZTdNSaTbRnvzhFj7fFw2yRLe_nd7ObZVZTrVIGlnJbGdNwxoUAQRgAbyQXoBrFgUkiBWOQQ2OlrsZpMgdGFadUNVzngk3RxT53G_zrYGMq134IbqwsKUhNtNRKja7LvasOPsZg23Ibut6E9xJI-fNd-f8d-wZ2c2FT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179097988</pqid></control><display><type>article</type><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</creator><creatorcontrib>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</creatorcontrib><description>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 ). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE01438H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antifouling substances ; Chemical analysis ; Competitiveness ; Economic analysis ; Field tests ; Kinetics ; Membranes ; Metals ; Nuclear energy ; Oceans ; Phenolic compounds ; Phenols ; Seawater ; Selectivity ; Sustainability ; Uranium ; Water analysis</subject><ispartof>Energy &amp; environmental science, 2019-02, Vol.12 (2), p.607-614</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</citedby><cites>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</cites><orcidid>0000-0002-2948-880X ; 0000-0002-3308-4728 ; 0000-0001-8136-7952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Tian, Fan</creatorcontrib><creatorcontrib>Richardson, Joseph J.</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Zhou, Jianfei</creatorcontrib><creatorcontrib>Guo, Junling</creatorcontrib><creatorcontrib>Liao, Xuepin</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><title>Energy &amp; environmental science</title><description>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 ). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</description><subject>Antifouling substances</subject><subject>Chemical analysis</subject><subject>Competitiveness</subject><subject>Economic analysis</subject><subject>Field tests</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Metals</subject><subject>Nuclear energy</subject><subject>Oceans</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Seawater</subject><subject>Selectivity</subject><subject>Sustainability</subject><subject>Uranium</subject><subject>Water analysis</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KxDAYDKLgunrxCQLehGq-pPk7ylJ3hQUvevFS0jZdu26TNUlZvfkOvqFPYmUVTzMwwwwzCJ0DuQLC9PVMFQWBnKnFAZqA5HnGJRGHf1xoeoxOYlwTIiiReoKeCrfqnLWhcyscfDXEhHubzObr43P7bJ3fdDV2Nu18eBmFvgrG2YhbH_Aw0m7osX1LwdSp8w63wfc4WrMzyYZTdNSaTbRnvzhFj7fFw2yRLe_nd7ObZVZTrVIGlnJbGdNwxoUAQRgAbyQXoBrFgUkiBWOQQ2OlrsZpMgdGFadUNVzngk3RxT53G_zrYGMq134IbqwsKUhNtNRKja7LvasOPsZg23Ibut6E9xJI-fNd-f8d-wZ2c2FT</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Luo, Wei</creator><creator>Xiao, Gao</creator><creator>Tian, Fan</creator><creator>Richardson, Joseph J.</creator><creator>Wang, Yaping</creator><creator>Zhou, Jianfei</creator><creator>Guo, Junling</creator><creator>Liao, Xuepin</creator><creator>Shi, Bi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2948-880X</orcidid><orcidid>https://orcid.org/0000-0002-3308-4728</orcidid><orcidid>https://orcid.org/0000-0001-8136-7952</orcidid></search><sort><creationdate>20190201</creationdate><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><author>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antifouling substances</topic><topic>Chemical analysis</topic><topic>Competitiveness</topic><topic>Economic analysis</topic><topic>Field tests</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Metals</topic><topic>Nuclear energy</topic><topic>Oceans</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Seawater</topic><topic>Selectivity</topic><topic>Sustainability</topic><topic>Uranium</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Tian, Fan</creatorcontrib><creatorcontrib>Richardson, Joseph J.</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Zhou, Jianfei</creatorcontrib><creatorcontrib>Guo, Junling</creatorcontrib><creatorcontrib>Liao, Xuepin</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wei</au><au>Xiao, Gao</au><au>Tian, Fan</au><au>Richardson, Joseph J.</au><au>Wang, Yaping</au><au>Zhou, Jianfei</au><au>Guo, Junling</au><au>Liao, Xuepin</au><au>Shi, Bi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>607</spage><epage>614</epage><pages>607-614</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 ). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8EE01438H</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2948-880X</orcidid><orcidid>https://orcid.org/0000-0002-3308-4728</orcidid><orcidid>https://orcid.org/0000-0001-8136-7952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2019-02, Vol.12 (2), p.607-614
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2179097988
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Antifouling substances
Chemical analysis
Competitiveness
Economic analysis
Field tests
Kinetics
Membranes
Metals
Nuclear energy
Oceans
Phenolic compounds
Phenols
Seawater
Selectivity
Sustainability
Uranium
Water analysis
title Engineering robust metal–phenolic network membranes for uranium extraction from seawater
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20robust%20metal%E2%80%93phenolic%20network%20membranes%20for%20uranium%20extraction%20from%20seawater&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Luo,%20Wei&rft.date=2019-02-01&rft.volume=12&rft.issue=2&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE01438H&rft_dat=%3Cproquest_cross%3E2179097988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179097988&rft_id=info:pmid/&rfr_iscdi=true