Loading…
Engineering robust metal–phenolic network membranes for uranium extraction from seawater
Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L −1 )....
Saved in:
Published in: | Energy & environmental science 2019-02, Vol.12 (2), p.607-614 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463 |
---|---|
cites | cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463 |
container_end_page | 614 |
container_issue | 2 |
container_start_page | 607 |
container_title | Energy & environmental science |
container_volume | 12 |
creator | Luo, Wei Xiao, Gao Tian, Fan Richardson, Joseph J. Wang, Yaping Zhou, Jianfei Guo, Junling Liao, Xuepin Shi, Bi |
description | Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L
−1
). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction. |
doi_str_mv | 10.1039/C8EE01438H |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2179097988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179097988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</originalsourceid><addsrcrecordid>eNpFUM1KxDAYDKLgunrxCQLehGq-pPk7ylJ3hQUvevFS0jZdu26TNUlZvfkOvqFPYmUVTzMwwwwzCJ0DuQLC9PVMFQWBnKnFAZqA5HnGJRGHf1xoeoxOYlwTIiiReoKeCrfqnLWhcyscfDXEhHubzObr43P7bJ3fdDV2Nu18eBmFvgrG2YhbH_Aw0m7osX1LwdSp8w63wfc4WrMzyYZTdNSaTbRnvzhFj7fFw2yRLe_nd7ObZVZTrVIGlnJbGdNwxoUAQRgAbyQXoBrFgUkiBWOQQ2OlrsZpMgdGFadUNVzngk3RxT53G_zrYGMq134IbqwsKUhNtNRKja7LvasOPsZg23Ibut6E9xJI-fNd-f8d-wZ2c2FT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179097988</pqid></control><display><type>article</type><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</creator><creatorcontrib>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</creatorcontrib><description>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L
−1
). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C8EE01438H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antifouling substances ; Chemical analysis ; Competitiveness ; Economic analysis ; Field tests ; Kinetics ; Membranes ; Metals ; Nuclear energy ; Oceans ; Phenolic compounds ; Phenols ; Seawater ; Selectivity ; Sustainability ; Uranium ; Water analysis</subject><ispartof>Energy & environmental science, 2019-02, Vol.12 (2), p.607-614</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</citedby><cites>FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</cites><orcidid>0000-0002-2948-880X ; 0000-0002-3308-4728 ; 0000-0001-8136-7952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Tian, Fan</creatorcontrib><creatorcontrib>Richardson, Joseph J.</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Zhou, Jianfei</creatorcontrib><creatorcontrib>Guo, Junling</creatorcontrib><creatorcontrib>Liao, Xuepin</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><title>Energy & environmental science</title><description>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L
−1
). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</description><subject>Antifouling substances</subject><subject>Chemical analysis</subject><subject>Competitiveness</subject><subject>Economic analysis</subject><subject>Field tests</subject><subject>Kinetics</subject><subject>Membranes</subject><subject>Metals</subject><subject>Nuclear energy</subject><subject>Oceans</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Seawater</subject><subject>Selectivity</subject><subject>Sustainability</subject><subject>Uranium</subject><subject>Water analysis</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KxDAYDKLgunrxCQLehGq-pPk7ylJ3hQUvevFS0jZdu26TNUlZvfkOvqFPYmUVTzMwwwwzCJ0DuQLC9PVMFQWBnKnFAZqA5HnGJRGHf1xoeoxOYlwTIiiReoKeCrfqnLWhcyscfDXEhHubzObr43P7bJ3fdDV2Nu18eBmFvgrG2YhbH_Aw0m7osX1LwdSp8w63wfc4WrMzyYZTdNSaTbRnvzhFj7fFw2yRLe_nd7ObZVZTrVIGlnJbGdNwxoUAQRgAbyQXoBrFgUkiBWOQQ2OlrsZpMgdGFadUNVzngk3RxT53G_zrYGMq134IbqwsKUhNtNRKja7LvasOPsZg23Ibut6E9xJI-fNd-f8d-wZ2c2FT</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Luo, Wei</creator><creator>Xiao, Gao</creator><creator>Tian, Fan</creator><creator>Richardson, Joseph J.</creator><creator>Wang, Yaping</creator><creator>Zhou, Jianfei</creator><creator>Guo, Junling</creator><creator>Liao, Xuepin</creator><creator>Shi, Bi</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2948-880X</orcidid><orcidid>https://orcid.org/0000-0002-3308-4728</orcidid><orcidid>https://orcid.org/0000-0001-8136-7952</orcidid></search><sort><creationdate>20190201</creationdate><title>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</title><author>Luo, Wei ; Xiao, Gao ; Tian, Fan ; Richardson, Joseph J. ; Wang, Yaping ; Zhou, Jianfei ; Guo, Junling ; Liao, Xuepin ; Shi, Bi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antifouling substances</topic><topic>Chemical analysis</topic><topic>Competitiveness</topic><topic>Economic analysis</topic><topic>Field tests</topic><topic>Kinetics</topic><topic>Membranes</topic><topic>Metals</topic><topic>Nuclear energy</topic><topic>Oceans</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Seawater</topic><topic>Selectivity</topic><topic>Sustainability</topic><topic>Uranium</topic><topic>Water analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wei</creatorcontrib><creatorcontrib>Xiao, Gao</creatorcontrib><creatorcontrib>Tian, Fan</creatorcontrib><creatorcontrib>Richardson, Joseph J.</creatorcontrib><creatorcontrib>Wang, Yaping</creatorcontrib><creatorcontrib>Zhou, Jianfei</creatorcontrib><creatorcontrib>Guo, Junling</creatorcontrib><creatorcontrib>Liao, Xuepin</creatorcontrib><creatorcontrib>Shi, Bi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wei</au><au>Xiao, Gao</au><au>Tian, Fan</au><au>Richardson, Joseph J.</au><au>Wang, Yaping</au><au>Zhou, Jianfei</au><au>Guo, Junling</au><au>Liao, Xuepin</au><au>Shi, Bi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering robust metal–phenolic network membranes for uranium extraction from seawater</atitle><jtitle>Energy & environmental science</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>12</volume><issue>2</issue><spage>607</spage><epage>614</epage><pages>607-614</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Roughly 4 billion tons of uranium exists in the oceans, which equates to a nearly inexhaustible supply for nuclear power production. However, the extraction of uranium from seawater is highly challenging due the background high salinity and uranium's relatively low concentration (∼3 μg L
−1
). Current approaches are generally limited by either their selectivity, sustainability, or their economic competitiveness. Here we engineered a biomass-derived microporous membrane, based on the interfacial formation of robust metal–phenolic networks (MPNs), for uranium capture from seawater. These membranes displayed advantages in terms of selectivity, kinetics, capacity, and renewability in both laboratory settings and marine field-testing. The MPN-based membranes showed a greater than ninefold higher uranium extraction capacity (27.81 μg) than conventional methods during a long-term cycling extraction of 10 L of natural seawater from the East China Sea. These results, coupled with our techno-economic analysis, demonstrate that MPN-based membranes are promising economically viable and industrially scalable materials for real-world uranium extraction.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8EE01438H</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2948-880X</orcidid><orcidid>https://orcid.org/0000-0002-3308-4728</orcidid><orcidid>https://orcid.org/0000-0001-8136-7952</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2019-02, Vol.12 (2), p.607-614 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2179097988 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Antifouling substances Chemical analysis Competitiveness Economic analysis Field tests Kinetics Membranes Metals Nuclear energy Oceans Phenolic compounds Phenols Seawater Selectivity Sustainability Uranium Water analysis |
title | Engineering robust metal–phenolic network membranes for uranium extraction from seawater |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A41%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20robust%20metal%E2%80%93phenolic%20network%20membranes%20for%20uranium%20extraction%20from%20seawater&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Luo,%20Wei&rft.date=2019-02-01&rft.volume=12&rft.issue=2&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C8EE01438H&rft_dat=%3Cproquest_cross%3E2179097988%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c298t-1e25ebaad535661603115d75618d8513707633141de79b4387413285228d59463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179097988&rft_id=info:pmid/&rfr_iscdi=true |