Loading…
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models
Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound. We first provid...
Saved in:
Published in: | arXiv.org 2020-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Amid, Ehsan Warmuth, Manfred K |
description | Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound. We first provide a "model level" interpretation of the EM upper-bound as sum of relative entropy divergences to a set of singleton models, induced by the set of observations. Our alternative motivation unifies the "observation level" and the "model level" view of the EM. As a result, we formulate an online version of the EM algorithm by adding an analogous inertia term which corresponds to the relative entropy divergence to the old model. Our motivation is more widely applicable than the previous approaches and leads to simple online updates for mixture of exponential distributions, hidden Markov models, and the first known online update for Kalman filters. Additionally, the finite sample form of the inertia term lets us derive online updates when there is no closed-form solution. Finally, we extend the analysis to the distributed setting where we motivate a systematic way of combining multiple hidden variable models. Experimentally, we validate the results on synthetic as well as real-world datasets. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2179189231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179189231</sourcerecordid><originalsourceid>FETCH-proquest_journals_21791892313</originalsourceid><addsrcrecordid>eNqNi7EOgjAUABsTE4nyD02cSWgrAquIYUEX40qKfZCS-qot8P0y-AFON9zdigRcCBZlB843JPR-iOOYH1OeJCIg17OewfWAT4hO0oOitR31LEdtkXbW0RsajUDLmkpUtLCvVqPGnlZaKUD6kE7L1sCyKTB-R9adNB7CH7dkfynvRRW9nf1M4MdmsJPDRTWcpTnLci6Y-K_6AmpYPVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179189231</pqid></control><display><type>article</type><title>Divergence-Based Motivation for Online EM and Combining Hidden Variable Models</title><source>Publicly Available Content (ProQuest)</source><creator>Amid, Ehsan ; Warmuth, Manfred K</creator><creatorcontrib>Amid, Ehsan ; Warmuth, Manfred K</creatorcontrib><description>Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound. We first provide a "model level" interpretation of the EM upper-bound as sum of relative entropy divergences to a set of singleton models, induced by the set of observations. Our alternative motivation unifies the "observation level" and the "model level" view of the EM. As a result, we formulate an online version of the EM algorithm by adding an analogous inertia term which corresponds to the relative entropy divergence to the old model. Our motivation is more widely applicable than the previous approaches and leads to simple online updates for mixture of exponential distributions, hidden Markov models, and the first known online update for Kalman filters. Additionally, the finite sample form of the inertia term lets us derive online updates when there is no closed-form solution. Finally, we extend the analysis to the distributed setting where we motivate a systematic way of combining multiple hidden variable models. Experimentally, we validate the results on synthetic as well as real-world datasets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Divergence ; Entropy ; Inertia ; Iterative methods ; Kalman filters ; Markov chains ; Motivation ; Parameter estimation ; Upper bounds</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2179189231?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Amid, Ehsan</creatorcontrib><creatorcontrib>Warmuth, Manfred K</creatorcontrib><title>Divergence-Based Motivation for Online EM and Combining Hidden Variable Models</title><title>arXiv.org</title><description>Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound. We first provide a "model level" interpretation of the EM upper-bound as sum of relative entropy divergences to a set of singleton models, induced by the set of observations. Our alternative motivation unifies the "observation level" and the "model level" view of the EM. As a result, we formulate an online version of the EM algorithm by adding an analogous inertia term which corresponds to the relative entropy divergence to the old model. Our motivation is more widely applicable than the previous approaches and leads to simple online updates for mixture of exponential distributions, hidden Markov models, and the first known online update for Kalman filters. Additionally, the finite sample form of the inertia term lets us derive online updates when there is no closed-form solution. Finally, we extend the analysis to the distributed setting where we motivate a systematic way of combining multiple hidden variable models. Experimentally, we validate the results on synthetic as well as real-world datasets.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Divergence</subject><subject>Entropy</subject><subject>Inertia</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>Markov chains</subject><subject>Motivation</subject><subject>Parameter estimation</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi7EOgjAUABsTE4nyD02cSWgrAquIYUEX40qKfZCS-qot8P0y-AFON9zdigRcCBZlB843JPR-iOOYH1OeJCIg17OewfWAT4hO0oOitR31LEdtkXbW0RsajUDLmkpUtLCvVqPGnlZaKUD6kE7L1sCyKTB-R9adNB7CH7dkfynvRRW9nf1M4MdmsJPDRTWcpTnLci6Y-K_6AmpYPVg</recordid><startdate>20200221</startdate><enddate>20200221</enddate><creator>Amid, Ehsan</creator><creator>Warmuth, Manfred K</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200221</creationdate><title>Divergence-Based Motivation for Online EM and Combining Hidden Variable Models</title><author>Amid, Ehsan ; Warmuth, Manfred K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21791892313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Divergence</topic><topic>Entropy</topic><topic>Inertia</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>Markov chains</topic><topic>Motivation</topic><topic>Parameter estimation</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Amid, Ehsan</creatorcontrib><creatorcontrib>Warmuth, Manfred K</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amid, Ehsan</au><au>Warmuth, Manfred K</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Divergence-Based Motivation for Online EM and Combining Hidden Variable Models</atitle><jtitle>arXiv.org</jtitle><date>2020-02-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Expectation-Maximization (EM) is a prominent approach for parameter estimation of hidden (aka latent) variable models. Given the full batch of data, EM forms an upper-bound of the negative log-likelihood of the model at each iteration and updates to the minimizer of this upper-bound. We first provide a "model level" interpretation of the EM upper-bound as sum of relative entropy divergences to a set of singleton models, induced by the set of observations. Our alternative motivation unifies the "observation level" and the "model level" view of the EM. As a result, we formulate an online version of the EM algorithm by adding an analogous inertia term which corresponds to the relative entropy divergence to the old model. Our motivation is more widely applicable than the previous approaches and leads to simple online updates for mixture of exponential distributions, hidden Markov models, and the first known online update for Kalman filters. Additionally, the finite sample form of the inertia term lets us derive online updates when there is no closed-form solution. Finally, we extend the analysis to the distributed setting where we motivate a systematic way of combining multiple hidden variable models. Experimentally, we validate the results on synthetic as well as real-world datasets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2179189231 |
source | Publicly Available Content (ProQuest) |
subjects | Algorithms Computer simulation Divergence Entropy Inertia Iterative methods Kalman filters Markov chains Motivation Parameter estimation Upper bounds |
title | Divergence-Based Motivation for Online EM and Combining Hidden Variable Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Divergence-Based%20Motivation%20for%20Online%20EM%20and%20Combining%20Hidden%20Variable%20Models&rft.jtitle=arXiv.org&rft.au=Amid,%20Ehsan&rft.date=2020-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2179189231%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21791892313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2179189231&rft_id=info:pmid/&rfr_iscdi=true |