Loading…
Braiding quantum circuit based on the 4 π Josephson effect
We propose a topological qubit in which braiding and readout are mediated by the 4π Majorana-Josephson effect. The braidonium device consists of three Majorana nanowires that come together to make a trijunction. In order to control the superconducting phase differences at the trijunction, the nanowi...
Saved in:
Published in: | Physical review. B 2019-01, Vol.99 (3), p.1, Article 035307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a topological qubit in which braiding and readout are mediated by the 4π Majorana-Josephson effect. The braidonium device consists of three Majorana nanowires that come together to make a trijunction. In order to control the superconducting phase differences at the trijunction, the nanowires are enclosed in a ring made of a conventional superconductor. In order to perform initialization and readout, one of the nanowires is coupled to a fluxonium qubit through a topological Josephson junction. We analyze how flux-based control and readout protocols can be used to demonstrate braiding and qubit operation for realistic materials and circuit parameters. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.99.035307 |