Loading…

Quasielectrons in lattice Moore-Read models

Moore-Read states can be expressed as conformal blocks of the underlying rational conformal field theory, which provides a well explored description for the insertion of quasiholes. It is known, however, that quasielectrons are more difficult to describe in continuous systems, since the natural gues...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-01, Vol.99 (4), p.045147, Article 045147
Main Authors: Manna, Sourav, Wildeboer, Julia, Nielsen, Anne E. B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Moore-Read states can be expressed as conformal blocks of the underlying rational conformal field theory, which provides a well explored description for the insertion of quasiholes. It is known, however, that quasielectrons are more difficult to describe in continuous systems, since the natural guess for how to construct them leads to a singularity. In this work, we show that the singularity problem does not arise for lattice Moore-Read states. This allows us to construct Moore-Read Pfaffian states on lattices for filling fraction 5/2 with both quasiholes and quasielectrons in a simple way. We investigate the density profile, charge, size, and braiding properties of the anyons by means of Monte Carlo simulations. Further we derive an exact few-body parent Hamiltonian for the states. Finally, we compare our results to the density profile, charge, and shape of anyons in the Kapit-Mueller model by means of exact diagonalization.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.99.045147