Loading…
Robust non-zero-sum investment and reinsurance game with default risk
This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance...
Saved in:
Published in: | Insurance, mathematics & economics mathematics & economics, 2019-01, Vol.84, p.115-132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3 |
container_end_page | 132 |
container_issue | |
container_start_page | 115 |
container_title | Insurance, mathematics & economics |
container_volume | 84 |
creator | Wang, Ning Zhang, Nan Jin, Zhuo Qian, Linyi |
description | This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results. |
doi_str_mv | 10.1016/j.insmatheco.2018.09.009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182451854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668718301148</els_id><sourcerecordid>2182451854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC_vEHA9YzKXTLLUUi9QEETXIZOcsamdpCaZij69KRVcujqb_3L-DyFMSUkJZdfr0ro4qrQC7cuKUF4SURIijtCM8q4uWtGKYzTL0q5gjHen6CzGNSGECtbN0OLZ91NM2HlXfEPwRZxGbN0OYhrBJaycwQFyxRSU04Df1Aj406YVNjCoaZNwsPH9Ap0MahPh8veeo9e7xcv8oVg-3T_Ob5aFbihNRc1AD6ylvKVE8bZTtO56Qzk0rDaNIX2ju0FxpnvDK8IHLVjDq0rUnahMw6A-R1eH3G3wH1P-Ua79FFyulBXlVbOPbrKKH1Q6-BgDDHIb7KjCl6RE7qHJtfyDJvfQJBEyQ8vW24MV8oqdhSCjtpCHGxtAJ2m8_T_kB_T1eq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182451854</pqid></control><display><type>article</type><title>Robust non-zero-sum investment and reinsurance game with default risk</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</creator><creatorcontrib>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</creatorcontrib><description>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2018.09.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ambiguity ; Assets ; Corporate bonds ; Default risk ; Dynamic programming ; Equilibrium ; Expected utility ; Financial market ; Investment ; Investment policy ; Investment strategy ; Investments ; Mathematical models ; Model ambiguity ; Nash equilibrium ; Non-zero-sum stochastic differential game ; Reinsurance ; Relative performance ; Robustness (mathematics) ; Stochastic models ; Verification ; Zero sum games</subject><ispartof>Insurance, mathematics & economics, 2019-01, Vol.84, p.115-132</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</citedby><cites>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</cites><orcidid>0000-0003-4448-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668718301148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,45992,46003</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Jin, Zhuo</creatorcontrib><creatorcontrib>Qian, Linyi</creatorcontrib><title>Robust non-zero-sum investment and reinsurance game with default risk</title><title>Insurance, mathematics & economics</title><description>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</description><subject>Ambiguity</subject><subject>Assets</subject><subject>Corporate bonds</subject><subject>Default risk</subject><subject>Dynamic programming</subject><subject>Equilibrium</subject><subject>Expected utility</subject><subject>Financial market</subject><subject>Investment</subject><subject>Investment policy</subject><subject>Investment strategy</subject><subject>Investments</subject><subject>Mathematical models</subject><subject>Model ambiguity</subject><subject>Nash equilibrium</subject><subject>Non-zero-sum stochastic differential game</subject><subject>Reinsurance</subject><subject>Relative performance</subject><subject>Robustness (mathematics)</subject><subject>Stochastic models</subject><subject>Verification</subject><subject>Zero sum games</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkMtKAzEUhoMoWC_vEHA9YzKXTLLUUi9QEETXIZOcsamdpCaZij69KRVcujqb_3L-DyFMSUkJZdfr0ro4qrQC7cuKUF4SURIijtCM8q4uWtGKYzTL0q5gjHen6CzGNSGECtbN0OLZ91NM2HlXfEPwRZxGbN0OYhrBJaycwQFyxRSU04Df1Aj406YVNjCoaZNwsPH9Ap0MahPh8veeo9e7xcv8oVg-3T_Ob5aFbihNRc1AD6ylvKVE8bZTtO56Qzk0rDaNIX2ju0FxpnvDK8IHLVjDq0rUnahMw6A-R1eH3G3wH1P-Ua79FFyulBXlVbOPbrKKH1Q6-BgDDHIb7KjCl6RE7qHJtfyDJvfQJBEyQ8vW24MV8oqdhSCjtpCHGxtAJ2m8_T_kB_T1eq4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Ning</creator><creator>Zhang, Nan</creator><creator>Jin, Zhuo</creator><creator>Qian, Linyi</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4448-3051</orcidid></search><sort><creationdate>201901</creationdate><title>Robust non-zero-sum investment and reinsurance game with default risk</title><author>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambiguity</topic><topic>Assets</topic><topic>Corporate bonds</topic><topic>Default risk</topic><topic>Dynamic programming</topic><topic>Equilibrium</topic><topic>Expected utility</topic><topic>Financial market</topic><topic>Investment</topic><topic>Investment policy</topic><topic>Investment strategy</topic><topic>Investments</topic><topic>Mathematical models</topic><topic>Model ambiguity</topic><topic>Nash equilibrium</topic><topic>Non-zero-sum stochastic differential game</topic><topic>Reinsurance</topic><topic>Relative performance</topic><topic>Robustness (mathematics)</topic><topic>Stochastic models</topic><topic>Verification</topic><topic>Zero sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Jin, Zhuo</creatorcontrib><creatorcontrib>Qian, Linyi</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Zhang, Nan</au><au>Jin, Zhuo</au><au>Qian, Linyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust non-zero-sum investment and reinsurance game with default risk</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>84</volume><spage>115</spage><epage>132</epage><pages>115-132</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2018.09.009</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4448-3051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2019-01, Vol.84, p.115-132 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_journals_2182451854 |
source | International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Ambiguity Assets Corporate bonds Default risk Dynamic programming Equilibrium Expected utility Financial market Investment Investment policy Investment strategy Investments Mathematical models Model ambiguity Nash equilibrium Non-zero-sum stochastic differential game Reinsurance Relative performance Robustness (mathematics) Stochastic models Verification Zero sum games |
title | Robust non-zero-sum investment and reinsurance game with default risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20non-zero-sum%20investment%20and%20reinsurance%20game%20with%20default%20risk&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Wang,%20Ning&rft.date=2019-01&rft.volume=84&rft.spage=115&rft.epage=132&rft.pages=115-132&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2018.09.009&rft_dat=%3Cproquest_cross%3E2182451854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2182451854&rft_id=info:pmid/&rfr_iscdi=true |