Loading…

Robust non-zero-sum investment and reinsurance game with default risk

This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2019-01, Vol.84, p.115-132
Main Authors: Wang, Ning, Zhang, Nan, Jin, Zhuo, Qian, Linyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3
cites cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3
container_end_page 132
container_issue
container_start_page 115
container_title Insurance, mathematics & economics
container_volume 84
creator Wang, Ning
Zhang, Nan
Jin, Zhuo
Qian, Linyi
description This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.
doi_str_mv 10.1016/j.insmatheco.2018.09.009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182451854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668718301148</els_id><sourcerecordid>2182451854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC_vEHA9YzKXTLLUUi9QEETXIZOcsamdpCaZij69KRVcujqb_3L-DyFMSUkJZdfr0ro4qrQC7cuKUF4SURIijtCM8q4uWtGKYzTL0q5gjHen6CzGNSGECtbN0OLZ91NM2HlXfEPwRZxGbN0OYhrBJaycwQFyxRSU04Df1Aj406YVNjCoaZNwsPH9Ap0MahPh8veeo9e7xcv8oVg-3T_Ob5aFbihNRc1AD6ylvKVE8bZTtO56Qzk0rDaNIX2ju0FxpnvDK8IHLVjDq0rUnahMw6A-R1eH3G3wH1P-Ua79FFyulBXlVbOPbrKKH1Q6-BgDDHIb7KjCl6RE7qHJtfyDJvfQJBEyQ8vW24MV8oqdhSCjtpCHGxtAJ2m8_T_kB_T1eq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182451854</pqid></control><display><type>article</type><title>Robust non-zero-sum investment and reinsurance game with default risk</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]</source><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</creator><creatorcontrib>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</creatorcontrib><description>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2018.09.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Ambiguity ; Assets ; Corporate bonds ; Default risk ; Dynamic programming ; Equilibrium ; Expected utility ; Financial market ; Investment ; Investment policy ; Investment strategy ; Investments ; Mathematical models ; Model ambiguity ; Nash equilibrium ; Non-zero-sum stochastic differential game ; Reinsurance ; Relative performance ; Robustness (mathematics) ; Stochastic models ; Verification ; Zero sum games</subject><ispartof>Insurance, mathematics &amp; economics, 2019-01, Vol.84, p.115-132</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jan 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</citedby><cites>FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</cites><orcidid>0000-0003-4448-3051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668718301148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,45992,46003</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Jin, Zhuo</creatorcontrib><creatorcontrib>Qian, Linyi</creatorcontrib><title>Robust non-zero-sum investment and reinsurance game with default risk</title><title>Insurance, mathematics &amp; economics</title><description>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</description><subject>Ambiguity</subject><subject>Assets</subject><subject>Corporate bonds</subject><subject>Default risk</subject><subject>Dynamic programming</subject><subject>Equilibrium</subject><subject>Expected utility</subject><subject>Financial market</subject><subject>Investment</subject><subject>Investment policy</subject><subject>Investment strategy</subject><subject>Investments</subject><subject>Mathematical models</subject><subject>Model ambiguity</subject><subject>Nash equilibrium</subject><subject>Non-zero-sum stochastic differential game</subject><subject>Reinsurance</subject><subject>Relative performance</subject><subject>Robustness (mathematics)</subject><subject>Stochastic models</subject><subject>Verification</subject><subject>Zero sum games</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkMtKAzEUhoMoWC_vEHA9YzKXTLLUUi9QEETXIZOcsamdpCaZij69KRVcujqb_3L-DyFMSUkJZdfr0ro4qrQC7cuKUF4SURIijtCM8q4uWtGKYzTL0q5gjHen6CzGNSGECtbN0OLZ91NM2HlXfEPwRZxGbN0OYhrBJaycwQFyxRSU04Df1Aj406YVNjCoaZNwsPH9Ap0MahPh8veeo9e7xcv8oVg-3T_Ob5aFbihNRc1AD6ylvKVE8bZTtO56Qzk0rDaNIX2ju0FxpnvDK8IHLVjDq0rUnahMw6A-R1eH3G3wH1P-Ua79FFyulBXlVbOPbrKKH1Q6-BgDDHIb7KjCl6RE7qHJtfyDJvfQJBEyQ8vW24MV8oqdhSCjtpCHGxtAJ2m8_T_kB_T1eq4</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Wang, Ning</creator><creator>Zhang, Nan</creator><creator>Jin, Zhuo</creator><creator>Qian, Linyi</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4448-3051</orcidid></search><sort><creationdate>201901</creationdate><title>Robust non-zero-sum investment and reinsurance game with default risk</title><author>Wang, Ning ; Zhang, Nan ; Jin, Zhuo ; Qian, Linyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambiguity</topic><topic>Assets</topic><topic>Corporate bonds</topic><topic>Default risk</topic><topic>Dynamic programming</topic><topic>Equilibrium</topic><topic>Expected utility</topic><topic>Financial market</topic><topic>Investment</topic><topic>Investment policy</topic><topic>Investment strategy</topic><topic>Investments</topic><topic>Mathematical models</topic><topic>Model ambiguity</topic><topic>Nash equilibrium</topic><topic>Non-zero-sum stochastic differential game</topic><topic>Reinsurance</topic><topic>Relative performance</topic><topic>Robustness (mathematics)</topic><topic>Stochastic models</topic><topic>Verification</topic><topic>Zero sum games</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Nan</creatorcontrib><creatorcontrib>Jin, Zhuo</creatorcontrib><creatorcontrib>Qian, Linyi</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Zhang, Nan</au><au>Jin, Zhuo</au><au>Qian, Linyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust non-zero-sum investment and reinsurance game with default risk</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2019-01</date><risdate>2019</risdate><volume>84</volume><spage>115</spage><epage>132</epage><pages>115-132</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>This paper investigates a non-zero-sum stochastic differential game between two competitive CARA insurers, who are concerned about the potential model ambiguity and aim to seek the robust optimal reinsurance and investment strategies. The ambiguity-averse insurers are allowed to purchase reinsurance treaty to mitigate individual claim risks; and can invest in a financial market consisting of one risk-free asset, one risky asset and one defaultable corporate bond. The objective of each insurer is to maximize the expected exponential utility of his terminal surplus relative to that of his competitor under the worst-case scenario of the alternative measures. Applying the techniques of stochastic dynamic programming, we derive the robust Nash equilibrium reinsurance and investment policies explicitly and present the corresponding verification theorem. Finally, we perform some numerical examples to illustrate the influence of model parameters on the equilibrium reinsurance and investment strategies and draw some economic interpretations from these results.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2018.09.009</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4448-3051</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2019-01, Vol.84, p.115-132
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_2182451854
source International Bibliography of the Social Sciences (IBSS); Backfile Package - Economics, Econometrics and Finance (Legacy) [YET]; ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Ambiguity
Assets
Corporate bonds
Default risk
Dynamic programming
Equilibrium
Expected utility
Financial market
Investment
Investment policy
Investment strategy
Investments
Mathematical models
Model ambiguity
Nash equilibrium
Non-zero-sum stochastic differential game
Reinsurance
Relative performance
Robustness (mathematics)
Stochastic models
Verification
Zero sum games
title Robust non-zero-sum investment and reinsurance game with default risk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A05%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20non-zero-sum%20investment%20and%20reinsurance%20game%20with%20default%20risk&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Wang,%20Ning&rft.date=2019-01&rft.volume=84&rft.spage=115&rft.epage=132&rft.pages=115-132&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2018.09.009&rft_dat=%3Cproquest_cross%3E2182451854%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-36ecf6518510a857a137bd18e463d4d0b4c7fa86cbd8208fc96482293792d46e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2182451854&rft_id=info:pmid/&rfr_iscdi=true