Loading…
Ternary Pt/Re/SnO^sub 2^ nanoparticles for ethanol oxidation reaction: Understanding the correlation between the synthesis route and the obtained material
Multicomponent nanoparticles (NPs) are extensively synthesized and studied because they exhibit interesting properties, being key components in many catalytic applications. The present work explores the effect of different synthesis conditions on the synthesis and properties of ternary nanoparticle...
Saved in:
Published in: | Applied catalysis. A, General General, 2019-01, Vol.570, p.319 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Multicomponent nanoparticles (NPs) are extensively synthesized and studied because they exhibit interesting properties, being key components in many catalytic applications. The present work explores the effect of different synthesis conditions on the synthesis and properties of ternary nanoparticle combinations, with potential application in ethanol oxidation. For this purpose three different routes to fabricate SnO2 nanoparticles decorated by Pt and Re were undertaken. Mixing of three metal precursors and reducing them together allow to synthesize a mixture of poorly-crystalized Pt, Re and SnO2 clusters, while reducing Pt and Re on SnO2 results in Pt NPs and single Re decorating SnO2 NPs. Only the third method consisting in adjusting the zeta potential of the individual Pt, Re and SnO2 NPs and assembling them in a controlled way leads to the formation of the desired ternary NPs arrangement. The synthesized ternary combinations were characterized by Transmission Electron Microscopy (TEM) combined with EDS analysis, Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Only the applying the third synthesis method a well-defined NPs system composed of three desirable types of nanoparticles are obtain, as confirm by TEM, EDS and XRD. Cyclic voltammetry (CV) experiments were carried out to study the electrocatalytic activity towards ethanol oxidation reaction (EOR). |
---|---|
ISSN: | 0926-860X 1873-3875 |
DOI: | 10.1016/j.apcata.2018.11.030 |