Loading…
Multivariate data analysis applied in the evaluation of crude oil blends
[Display omitted] •201 crude oils of different wells contributed to the formation of two Blends.•PCA and HCA were used to monitor the production quality of blends.•Identification of outlier’s samples that may favor the quality control of blends.•Different wells in the blends composition caused a cha...
Saved in:
Published in: | Fuel (Guildford) 2019-03, Vol.239, p.421-428 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383 |
container_end_page | 428 |
container_issue | |
container_start_page | 421 |
container_title | Fuel (Guildford) |
container_volume | 239 |
creator | Sad, Cristina M.S. da Silva, Mayara dos Santos, Francine D. Pereira, Laine B. Corona, Rayane R.B. Silva, Samantha R.C. Portela, Natália A. Castro, Eustáquio V.R. Filgueiras, Paulo R. Lacerda, Valdemar |
description | [Display omitted]
•201 crude oils of different wells contributed to the formation of two Blends.•PCA and HCA were used to monitor the production quality of blends.•Identification of outlier’s samples that may favor the quality control of blends.•Different wells in the blends composition caused a change in the oil profile.
In this paper, monitoring of the physicochemical properties of crude oil blends during production stages is described. The data of the properties of crude oil blends were obtained by laboratory characterization, and then analyzed by principal component analysis (PCA), hierarchical cluster analysis (HCA), and Mahanalobis distance. Thus, the quality of the blends was monitored quickly with simple multivariate tools. The results indicate that a change in the contribution of different wells in the blends caused a change in the profile. The PCA demonstrated that in each period, the physicochemical properties in the blends contributed to verifying the spread of the data. The blends could be organized by HCA, and it was possible to identify outlier samples with different quality standards for the oil. This information is important because it allows checking the changes in the oil profile, which helps in making adjustments to improve the quality of the final product in the primary process. |
doi_str_mv | 10.1016/j.fuel.2018.11.045 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182475943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118319264</els_id><sourcerecordid>2182475943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMouK7-AU8Bz62ZJG1T8CKLusKKFz2HpJliSm1rki7sv7fLevY0l_eGj0fILbAcGJT3Xd7O2OecgcoBciaLM7ICVYmsgkKckxVbqIyLEi7JVYwdY6xShVyR7dvcJ783wZuE1JlkqBlMf4g-UjNNvUdH_UDTF1Lcm342yY8DHVvahNkhHX1PbY-Di9fkojV9xJu_uyafz08fm222e3953TzuskayOmWKlVaWRmHDoSwLYNJZK5UBcMpKLm1Ri9phKVouKqsqMFxYbhtegEMUSqzJ3envFMafGWPS3TiHZXLUHBSXVVFLsVD8RDVhjDFgq6fgv004aGD6WEx3-lhMH4tpAL0UW6SHk4TL_r3HoGPjcWjQ-YBN0m70_-m_MOVzwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182475943</pqid></control><display><type>article</type><title>Multivariate data analysis applied in the evaluation of crude oil blends</title><source>ScienceDirect Journals</source><creator>Sad, Cristina M.S. ; da Silva, Mayara ; dos Santos, Francine D. ; Pereira, Laine B. ; Corona, Rayane R.B. ; Silva, Samantha R.C. ; Portela, Natália A. ; Castro, Eustáquio V.R. ; Filgueiras, Paulo R. ; Lacerda, Valdemar</creator><creatorcontrib>Sad, Cristina M.S. ; da Silva, Mayara ; dos Santos, Francine D. ; Pereira, Laine B. ; Corona, Rayane R.B. ; Silva, Samantha R.C. ; Portela, Natália A. ; Castro, Eustáquio V.R. ; Filgueiras, Paulo R. ; Lacerda, Valdemar</creatorcontrib><description>[Display omitted]
•201 crude oils of different wells contributed to the formation of two Blends.•PCA and HCA were used to monitor the production quality of blends.•Identification of outlier’s samples that may favor the quality control of blends.•Different wells in the blends composition caused a change in the oil profile.
In this paper, monitoring of the physicochemical properties of crude oil blends during production stages is described. The data of the properties of crude oil blends were obtained by laboratory characterization, and then analyzed by principal component analysis (PCA), hierarchical cluster analysis (HCA), and Mahanalobis distance. Thus, the quality of the blends was monitored quickly with simple multivariate tools. The results indicate that a change in the contribution of different wells in the blends caused a change in the profile. The PCA demonstrated that in each period, the physicochemical properties in the blends contributed to verifying the spread of the data. The blends could be organized by HCA, and it was possible to identify outlier samples with different quality standards for the oil. This information is important because it allows checking the changes in the oil profile, which helps in making adjustments to improve the quality of the final product in the primary process.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.11.045</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Blend ; Cluster analysis ; Crude oil ; Data analysis ; Data processing ; Mixtures ; Multivariate analysis ; Outlier detection ; Outliers (statistics) ; Physicochemical properties ; Principal components analysis ; Properties (attributes) ; Quality standards</subject><ispartof>Fuel (Guildford), 2019-03, Vol.239, p.421-428</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383</citedby><cites>FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383</cites><orcidid>0000-0002-8257-5443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sad, Cristina M.S.</creatorcontrib><creatorcontrib>da Silva, Mayara</creatorcontrib><creatorcontrib>dos Santos, Francine D.</creatorcontrib><creatorcontrib>Pereira, Laine B.</creatorcontrib><creatorcontrib>Corona, Rayane R.B.</creatorcontrib><creatorcontrib>Silva, Samantha R.C.</creatorcontrib><creatorcontrib>Portela, Natália A.</creatorcontrib><creatorcontrib>Castro, Eustáquio V.R.</creatorcontrib><creatorcontrib>Filgueiras, Paulo R.</creatorcontrib><creatorcontrib>Lacerda, Valdemar</creatorcontrib><title>Multivariate data analysis applied in the evaluation of crude oil blends</title><title>Fuel (Guildford)</title><description>[Display omitted]
•201 crude oils of different wells contributed to the formation of two Blends.•PCA and HCA were used to monitor the production quality of blends.•Identification of outlier’s samples that may favor the quality control of blends.•Different wells in the blends composition caused a change in the oil profile.
In this paper, monitoring of the physicochemical properties of crude oil blends during production stages is described. The data of the properties of crude oil blends were obtained by laboratory characterization, and then analyzed by principal component analysis (PCA), hierarchical cluster analysis (HCA), and Mahanalobis distance. Thus, the quality of the blends was monitored quickly with simple multivariate tools. The results indicate that a change in the contribution of different wells in the blends caused a change in the profile. The PCA demonstrated that in each period, the physicochemical properties in the blends contributed to verifying the spread of the data. The blends could be organized by HCA, and it was possible to identify outlier samples with different quality standards for the oil. This information is important because it allows checking the changes in the oil profile, which helps in making adjustments to improve the quality of the final product in the primary process.</description><subject>Blend</subject><subject>Cluster analysis</subject><subject>Crude oil</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Mixtures</subject><subject>Multivariate analysis</subject><subject>Outlier detection</subject><subject>Outliers (statistics)</subject><subject>Physicochemical properties</subject><subject>Principal components analysis</subject><subject>Properties (attributes)</subject><subject>Quality standards</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMouK7-AU8Bz62ZJG1T8CKLusKKFz2HpJliSm1rki7sv7fLevY0l_eGj0fILbAcGJT3Xd7O2OecgcoBciaLM7ICVYmsgkKckxVbqIyLEi7JVYwdY6xShVyR7dvcJ783wZuE1JlkqBlMf4g-UjNNvUdH_UDTF1Lcm342yY8DHVvahNkhHX1PbY-Di9fkojV9xJu_uyafz08fm222e3953TzuskayOmWKlVaWRmHDoSwLYNJZK5UBcMpKLm1Ri9phKVouKqsqMFxYbhtegEMUSqzJ3envFMafGWPS3TiHZXLUHBSXVVFLsVD8RDVhjDFgq6fgv004aGD6WEx3-lhMH4tpAL0UW6SHk4TL_r3HoGPjcWjQ-YBN0m70_-m_MOVzwQ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Sad, Cristina M.S.</creator><creator>da Silva, Mayara</creator><creator>dos Santos, Francine D.</creator><creator>Pereira, Laine B.</creator><creator>Corona, Rayane R.B.</creator><creator>Silva, Samantha R.C.</creator><creator>Portela, Natália A.</creator><creator>Castro, Eustáquio V.R.</creator><creator>Filgueiras, Paulo R.</creator><creator>Lacerda, Valdemar</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-8257-5443</orcidid></search><sort><creationdate>20190301</creationdate><title>Multivariate data analysis applied in the evaluation of crude oil blends</title><author>Sad, Cristina M.S. ; da Silva, Mayara ; dos Santos, Francine D. ; Pereira, Laine B. ; Corona, Rayane R.B. ; Silva, Samantha R.C. ; Portela, Natália A. ; Castro, Eustáquio V.R. ; Filgueiras, Paulo R. ; Lacerda, Valdemar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Blend</topic><topic>Cluster analysis</topic><topic>Crude oil</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Mixtures</topic><topic>Multivariate analysis</topic><topic>Outlier detection</topic><topic>Outliers (statistics)</topic><topic>Physicochemical properties</topic><topic>Principal components analysis</topic><topic>Properties (attributes)</topic><topic>Quality standards</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sad, Cristina M.S.</creatorcontrib><creatorcontrib>da Silva, Mayara</creatorcontrib><creatorcontrib>dos Santos, Francine D.</creatorcontrib><creatorcontrib>Pereira, Laine B.</creatorcontrib><creatorcontrib>Corona, Rayane R.B.</creatorcontrib><creatorcontrib>Silva, Samantha R.C.</creatorcontrib><creatorcontrib>Portela, Natália A.</creatorcontrib><creatorcontrib>Castro, Eustáquio V.R.</creatorcontrib><creatorcontrib>Filgueiras, Paulo R.</creatorcontrib><creatorcontrib>Lacerda, Valdemar</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sad, Cristina M.S.</au><au>da Silva, Mayara</au><au>dos Santos, Francine D.</au><au>Pereira, Laine B.</au><au>Corona, Rayane R.B.</au><au>Silva, Samantha R.C.</au><au>Portela, Natália A.</au><au>Castro, Eustáquio V.R.</au><au>Filgueiras, Paulo R.</au><au>Lacerda, Valdemar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate data analysis applied in the evaluation of crude oil blends</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>239</volume><spage>421</spage><epage>428</epage><pages>421-428</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•201 crude oils of different wells contributed to the formation of two Blends.•PCA and HCA were used to monitor the production quality of blends.•Identification of outlier’s samples that may favor the quality control of blends.•Different wells in the blends composition caused a change in the oil profile.
In this paper, monitoring of the physicochemical properties of crude oil blends during production stages is described. The data of the properties of crude oil blends were obtained by laboratory characterization, and then analyzed by principal component analysis (PCA), hierarchical cluster analysis (HCA), and Mahanalobis distance. Thus, the quality of the blends was monitored quickly with simple multivariate tools. The results indicate that a change in the contribution of different wells in the blends caused a change in the profile. The PCA demonstrated that in each period, the physicochemical properties in the blends contributed to verifying the spread of the data. The blends could be organized by HCA, and it was possible to identify outlier samples with different quality standards for the oil. This information is important because it allows checking the changes in the oil profile, which helps in making adjustments to improve the quality of the final product in the primary process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.11.045</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8257-5443</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2019-03, Vol.239, p.421-428 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2182475943 |
source | ScienceDirect Journals |
subjects | Blend Cluster analysis Crude oil Data analysis Data processing Mixtures Multivariate analysis Outlier detection Outliers (statistics) Physicochemical properties Principal components analysis Properties (attributes) Quality standards |
title | Multivariate data analysis applied in the evaluation of crude oil blends |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20data%20analysis%20applied%20in%20the%20evaluation%20of%20crude%20oil%20blends&rft.jtitle=Fuel%20(Guildford)&rft.au=Sad,%20Cristina%20M.S.&rft.date=2019-03-01&rft.volume=239&rft.spage=421&rft.epage=428&rft.pages=421-428&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.11.045&rft_dat=%3Cproquest_cross%3E2182475943%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-806b46a8ec21665104dbb48a11d8b424b5939de63f237b871a23b2bc251dee383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2182475943&rft_id=info:pmid/&rfr_iscdi=true |