Loading…

Optimizing phthalocyanine based dye-sensitized solar cells: The role of reduced graphene oxide

Dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparison purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phth...

Full description

Saved in:
Bibliographic Details
Published in:Synthetic metals 2018-12, Vol.246, p.236-245
Main Authors: Chindeka, Francis, Mashazi, Philani, Britton, Jonathan, Fomo, Gertrude, Oluwole, David O., Sindelo, Azole, Nyokong, Tebello
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dye-sensitized solar cells (DSSC) were fabricated by incorporating graphene materials as catalysts at the counter electrode. Platinum was also used as a catalyst for comparison purposes. Different phthalocyanines: hydroxyl indium tetracarboxyphenoxy phthalocyanine (1), chloro indium octacarboxy phthalocyanine (2) and dibenzoic acid silicon phthalocyanine (3) were used as dyes. Complex 3 gave the highest power conversion efficiency (η) of 3.19% when using nitrogen doped reduced graphene oxide nanosheets (NrGONS) as a catalyst at the counter electrode, and TiO2 containing rGONS at the anode. The value is close to 3.8% obtained when using Pt catalyst instead of NrGONS at the cathode, thus confirming that NrGONS is a promising candidate to replace the more expensive Pt. The study also shows that placing rGONS on both the anode and cathode improves efficiency.
ISSN:0379-6779
1879-3290
DOI:10.1016/j.synthmet.2018.10.021