Loading…
Electrochemical sensing of purines guanine and adenine using single-walled carbon nanohorns and nanocellulose
In this study, we report an electrochemical study based on nanocellulose (NC) and single-walled carbon nanohorns (SWCNH). SWCNH and NC ensure large surface area, good conductivity, high porosity and chemical stability, becoming attractive for electrodes. The materials were characterized by X-ray dif...
Saved in:
Published in: | Electrochimica acta 2019-03, Vol.298, p.893-900 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we report an electrochemical study based on nanocellulose (NC) and single-walled carbon nanohorns (SWCNH). SWCNH and NC ensure large surface area, good conductivity, high porosity and chemical stability, becoming attractive for electrodes. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning Electron Micrograph (SEM), Transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential. Using XRD and FTIR it was possible to observe particular characteristics of NC and SWCNH. The presence of dahlia-like assemblies on the NC surface was observed by MEV and TEM. Then, we investigated the electrochemical behavior of NC-SWCNH, which showed the excellent results when it was used guanine and adenine, as proof of concept, by using cyclic and linear sweep voltammetry (LSV). LSV was also employed for simultaneous detection resulting in limits of detection of 1.7 × 10−7 mol L−1 and 1.4 × 10−6 mol L−1, for guanine and adenine, respectively. In addition, the proposed electrode was applied for determination of both bases in synthetic human serum and fish sperm. We demonstrate that it is possible to use NC, a renewable material, in conducting thin films with SWCNH, and due to simplicity in the preparation and high conductivity, this new thin film could be extended for others electrochemical purposes such as sensing and biosensing.
[Display omitted] |
---|---|
ISSN: | 0013-4686 1873-3859 |
DOI: | 10.1016/j.electacta.2018.12.114 |