Loading…
On Fractional p-Laplacian Equations at Resonance
This article shows the existence of weak solutions of a resonant problem for a fractional p -Laplacian equation in a bounded domain in R N . Our arguments are based on the Minimum principle, saddle point theorem and rely on a generalization of the Landesman–Lazer-type condition.
Saved in:
Published in: | Bulletin of the Malaysian Mathematical Sciences Society 2020-03, Vol.43 (2), p.1273-1288 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-8dbee1115956aea1e28b983e9f6235de6e5bac2cb808fb1e95e05ca735fc530a3 |
container_end_page | 1288 |
container_issue | 2 |
container_start_page | 1273 |
container_title | Bulletin of the Malaysian Mathematical Sciences Society |
container_volume | 43 |
creator | Hung, Bui Quoc Toan, Hoang Quoc |
description | This article shows the existence of weak solutions of a resonant problem for a fractional
p
-Laplacian equation in a bounded domain in
R
N
. Our arguments are based on the Minimum principle, saddle point theorem and rely on a generalization of the Landesman–Lazer-type condition. |
doi_str_mv | 10.1007/s40840-019-00740-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2182952897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2182952897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8dbee1115956aea1e28b983e9f6235de6e5bac2cb808fb1e95e05ca735fc530a3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOOb-AZ8KPkcvaZMmjzI2FQYD0edwza7SMdsuaRn-92ZW8M17uR98v8fdh7FbAfcCoHyIBZgCOAjLU5uq0wWbSWGAFxL0JZuBkJrrEtQ1W8S4hxRKSy3FjMG2zdYB_dB0LR6ynm-wP6BvsM1WxxHP45jhkL1STILW0w27qvEQafGb5-x9vXpbPvPN9ull-bjhXpYwcLOriIQQyiqNhIKkqazJydZa5mpHmlSFXvrKgKkrQVYRKI9lrmqvcsB8zu6mvX3ojiPFwe27MaQbo0uvSauksWVSyUnlQxdjoNr1ofnE8OUEuDMcN8FxCY77geNOyZRPppjE7QeFv9X_uL4BBXtmiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182952897</pqid></control><display><type>article</type><title>On Fractional p-Laplacian Equations at Resonance</title><source>Springer Nature</source><creator>Hung, Bui Quoc ; Toan, Hoang Quoc</creator><creatorcontrib>Hung, Bui Quoc ; Toan, Hoang Quoc</creatorcontrib><description>This article shows the existence of weak solutions of a resonant problem for a fractional
p
-Laplacian equation in a bounded domain in
R
N
. Our arguments are based on the Minimum principle, saddle point theorem and rely on a generalization of the Landesman–Lazer-type condition.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-019-00740-w</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Laplace equation ; Mathematics ; Mathematics and Statistics ; Saddle points</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2020-03, Vol.43 (2), p.1273-1288</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2019</rights><rights>Bulletin of the Malaysian Mathematical Sciences Society is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8dbee1115956aea1e28b983e9f6235de6e5bac2cb808fb1e95e05ca735fc530a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hung, Bui Quoc</creatorcontrib><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><title>On Fractional p-Laplacian Equations at Resonance</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>This article shows the existence of weak solutions of a resonant problem for a fractional
p
-Laplacian equation in a bounded domain in
R
N
. Our arguments are based on the Minimum principle, saddle point theorem and rely on a generalization of the Landesman–Lazer-type condition.</description><subject>Applications of Mathematics</subject><subject>Laplace equation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Saddle points</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOOb-AZ8KPkcvaZMmjzI2FQYD0edwza7SMdsuaRn-92ZW8M17uR98v8fdh7FbAfcCoHyIBZgCOAjLU5uq0wWbSWGAFxL0JZuBkJrrEtQ1W8S4hxRKSy3FjMG2zdYB_dB0LR6ynm-wP6BvsM1WxxHP45jhkL1STILW0w27qvEQafGb5-x9vXpbPvPN9ull-bjhXpYwcLOriIQQyiqNhIKkqazJydZa5mpHmlSFXvrKgKkrQVYRKI9lrmqvcsB8zu6mvX3ojiPFwe27MaQbo0uvSauksWVSyUnlQxdjoNr1ofnE8OUEuDMcN8FxCY77geNOyZRPppjE7QeFv9X_uL4BBXtmiw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Hung, Bui Quoc</creator><creator>Toan, Hoang Quoc</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>On Fractional p-Laplacian Equations at Resonance</title><author>Hung, Bui Quoc ; Toan, Hoang Quoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8dbee1115956aea1e28b983e9f6235de6e5bac2cb808fb1e95e05ca735fc530a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Laplace equation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Saddle points</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hung, Bui Quoc</creatorcontrib><creatorcontrib>Toan, Hoang Quoc</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hung, Bui Quoc</au><au>Toan, Hoang Quoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Fractional p-Laplacian Equations at Resonance</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>43</volume><issue>2</issue><spage>1273</spage><epage>1288</epage><pages>1273-1288</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>This article shows the existence of weak solutions of a resonant problem for a fractional
p
-Laplacian equation in a bounded domain in
R
N
. Our arguments are based on the Minimum principle, saddle point theorem and rely on a generalization of the Landesman–Lazer-type condition.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-019-00740-w</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0126-6705 |
ispartof | Bulletin of the Malaysian Mathematical Sciences Society, 2020-03, Vol.43 (2), p.1273-1288 |
issn | 0126-6705 2180-4206 |
language | eng |
recordid | cdi_proquest_journals_2182952897 |
source | Springer Nature |
subjects | Applications of Mathematics Laplace equation Mathematics Mathematics and Statistics Saddle points |
title | On Fractional p-Laplacian Equations at Resonance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Fractional%20p-Laplacian%20Equations%20at%20Resonance&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Hung,%20Bui%20Quoc&rft.date=2020-03-01&rft.volume=43&rft.issue=2&rft.spage=1273&rft.epage=1288&rft.pages=1273-1288&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-019-00740-w&rft_dat=%3Cproquest_cross%3E2182952897%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-8dbee1115956aea1e28b983e9f6235de6e5bac2cb808fb1e95e05ca735fc530a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2182952897&rft_id=info:pmid/&rfr_iscdi=true |