Loading…
The Glassy Solid as a Statistical Ensemble of Crystalline Microstates
Motivated by the concept of partial ergodicity, we present an alternative description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. We show analytically that the radial distribution function (RDF) and powder X-ray diffractio...
Saved in:
Published in: | arXiv.org 2019-02 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jones, Eric B Stevanovic, Vladan |
description | Motivated by the concept of partial ergodicity, we present an alternative description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. We show analytically that the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity of ergodic systems can be rigorously formulated as statistical ensemble averages, which we evaluate for amorphous silicon and glassy silica through the first-principles random structure sampling. We show that using structures with unit cells as small as 24 atoms, we are able to accurately replicate the experimental RDF and XRD pattern for amorphous silicon as well as the key structural features for glassy silica, thus supporting the ensemble nature of the glasses and opening the door to fully predictive description without the need for experimental inputs. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2182954074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2182954074</sourcerecordid><originalsourceid>FETCH-proquest_journals_21829540743</originalsourceid><addsrcrecordid>eNqNirEOgjAUABsTE4nyDy9xJiktCM4EdXGC3TyxxJIn1b4y8Pcy-AFOl8vdSkRK6zQpM6U2ImYepJTqUKg815Go26eBMyHzDI0j-wBkQGgCBsvBdkhQj2xedzLgeqj8zAGJ7GjgajvvFguGd2LdI7GJf9yK_aluq0vy9u4zGQ63wU1-XNJNpaU65pksMv3f9QU_Xjqf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2182954074</pqid></control><display><type>article</type><title>The Glassy Solid as a Statistical Ensemble of Crystalline Microstates</title><source>Publicly Available Content (ProQuest)</source><creator>Jones, Eric B ; Stevanovic, Vladan</creator><creatorcontrib>Jones, Eric B ; Stevanovic, Vladan</creatorcontrib><description>Motivated by the concept of partial ergodicity, we present an alternative description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. We show analytically that the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity of ergodic systems can be rigorously formulated as statistical ensemble averages, which we evaluate for amorphous silicon and glassy silica through the first-principles random structure sampling. We show that using structures with unit cells as small as 24 atoms, we are able to accurately replicate the experimental RDF and XRD pattern for amorphous silicon as well as the key structural features for glassy silica, thus supporting the ensemble nature of the glasses and opening the door to fully predictive description without the need for experimental inputs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amorphous silicon ; Crystal structure ; Crystallinity ; Distribution functions ; Ergodic processes ; First principles ; Photovoltaic cells ; Potential energy ; Radial distribution ; Silica glass ; Silicon dioxide ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2182954074?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Jones, Eric B</creatorcontrib><creatorcontrib>Stevanovic, Vladan</creatorcontrib><title>The Glassy Solid as a Statistical Ensemble of Crystalline Microstates</title><title>arXiv.org</title><description>Motivated by the concept of partial ergodicity, we present an alternative description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. We show analytically that the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity of ergodic systems can be rigorously formulated as statistical ensemble averages, which we evaluate for amorphous silicon and glassy silica through the first-principles random structure sampling. We show that using structures with unit cells as small as 24 atoms, we are able to accurately replicate the experimental RDF and XRD pattern for amorphous silicon as well as the key structural features for glassy silica, thus supporting the ensemble nature of the glasses and opening the door to fully predictive description without the need for experimental inputs.</description><subject>Amorphous silicon</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Distribution functions</subject><subject>Ergodic processes</subject><subject>First principles</subject><subject>Photovoltaic cells</subject><subject>Potential energy</subject><subject>Radial distribution</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEOgjAUABsTE4nyDy9xJiktCM4EdXGC3TyxxJIn1b4y8Pcy-AFOl8vdSkRK6zQpM6U2ImYepJTqUKg815Go26eBMyHzDI0j-wBkQGgCBsvBdkhQj2xedzLgeqj8zAGJ7GjgajvvFguGd2LdI7GJf9yK_aluq0vy9u4zGQ63wU1-XNJNpaU65pksMv3f9QU_Xjqf</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Jones, Eric B</creator><creator>Stevanovic, Vladan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190215</creationdate><title>The Glassy Solid as a Statistical Ensemble of Crystalline Microstates</title><author>Jones, Eric B ; Stevanovic, Vladan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21829540743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous silicon</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Distribution functions</topic><topic>Ergodic processes</topic><topic>First principles</topic><topic>Photovoltaic cells</topic><topic>Potential energy</topic><topic>Radial distribution</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Eric B</creatorcontrib><creatorcontrib>Stevanovic, Vladan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Eric B</au><au>Stevanovic, Vladan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Glassy Solid as a Statistical Ensemble of Crystalline Microstates</atitle><jtitle>arXiv.org</jtitle><date>2019-02-15</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Motivated by the concept of partial ergodicity, we present an alternative description of covalent and ionic glassy solids as statistical ensembles of crystalline local minima on the potential energy surface. We show analytically that the radial distribution function (RDF) and powder X-ray diffraction (XRD) intensity of ergodic systems can be rigorously formulated as statistical ensemble averages, which we evaluate for amorphous silicon and glassy silica through the first-principles random structure sampling. We show that using structures with unit cells as small as 24 atoms, we are able to accurately replicate the experimental RDF and XRD pattern for amorphous silicon as well as the key structural features for glassy silica, thus supporting the ensemble nature of the glasses and opening the door to fully predictive description without the need for experimental inputs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2182954074 |
source | Publicly Available Content (ProQuest) |
subjects | Amorphous silicon Crystal structure Crystallinity Distribution functions Ergodic processes First principles Photovoltaic cells Potential energy Radial distribution Silica glass Silicon dioxide X ray powder diffraction X-ray diffraction |
title | The Glassy Solid as a Statistical Ensemble of Crystalline Microstates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A42%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Glassy%20Solid%20as%20a%20Statistical%20Ensemble%20of%20Crystalline%20Microstates&rft.jtitle=arXiv.org&rft.au=Jones,%20Eric%20B&rft.date=2019-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2182954074%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21829540743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2182954074&rft_id=info:pmid/&rfr_iscdi=true |