Loading…

Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries

The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2019-02, Vol.29 (8), p.n/a
Main Authors: Gao, Xuejie, Yang, Xiaofei, Li, Minsi, Sun, Qian, Liang, Jianneng, Luo, Jing, Wang, Jiwei, Li, Weihan, Liang, Jianwen, Liu, Yulong, Wang, Sizhe, Hu, Yongfeng, Xiao, Qunfeng, Li, Ruying, Sham, Tsun‐Kong, Sun, Xueliang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced functional materials
container_volume 29
creator Gao, Xuejie
Yang, Xiaofei
Li, Minsi
Sun, Qian
Liang, Jianneng
Luo, Jing
Wang, Jiwei
Li, Weihan
Liang, Jianwen
Liu, Yulong
Wang, Sizhe
Hu, Yongfeng
Xiao, Qunfeng
Li, Ruying
Sham, Tsun‐Kong
Sun, Xueliang
description The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm−2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g−1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g−1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries. The S/NCNT@Co‐SnS2 material acts as not only an effective shuttle‐suppressing shield for polysulfide but also an electrocatalyst in improving sulfur utilization and cycling stability for high‐sulfur‐loading lithium‐sulfur batteries. Therefore, it maintains 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2.
doi_str_mv 10.1002/adfm.201806724
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2183090371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183090371</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2024-36aa0afa113cc9f9d8873320fb0a437c1804d5578f52f8a46f4c5654d6de0f163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZW2JdcCvvJYhbSlSEIuAxM5yEzt1lcbFdqmygk_gG_kSUoq6mrmaO3c0B4BrjG4xQuRO1Gp9SxBOUBQTdgJGOMJRQBFJTo89fjsHF86tEMJxTNkIfOZmIVr_8_U9MRtZw7IrCdxpv4STrWhhVnn9IWEuOy-tg0bBsu-kbbTzuoLZwhm78dp0w34uvGh7px2cKiUrD5WxcK6b5TArYWFErbsGFvpP3gs_BGrpLsGZEq2TV_91DF5n05d8HhTPD495VgQNQYQFNBICCSUwplWVqrROkphSgtQCCUbjania1WEYJyokKhEsUqwKo5DVUS2RwhEdg5tD7saa9610nq_M1nbDSU5wQlGKaIwHV3pw7XQre76xei1szzHie8J8T5gfCfNsMns6KvoLUkJ1lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183090371</pqid></control><display><type>article</type><title>Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries</title><source>Wiley</source><creator>Gao, Xuejie ; Yang, Xiaofei ; Li, Minsi ; Sun, Qian ; Liang, Jianneng ; Luo, Jing ; Wang, Jiwei ; Li, Weihan ; Liang, Jianwen ; Liu, Yulong ; Wang, Sizhe ; Hu, Yongfeng ; Xiao, Qunfeng ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</creator><creatorcontrib>Gao, Xuejie ; Yang, Xiaofei ; Li, Minsi ; Sun, Qian ; Liang, Jianneng ; Luo, Jing ; Wang, Jiwei ; Li, Weihan ; Liang, Jianwen ; Liu, Yulong ; Wang, Sizhe ; Hu, Yongfeng ; Xiao, Qunfeng ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</creatorcontrib><description>The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm−2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g−1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g−1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries. The S/NCNT@Co‐SnS2 material acts as not only an effective shuttle‐suppressing shield for polysulfide but also an electrocatalyst in improving sulfur utilization and cycling stability for high‐sulfur‐loading lithium‐sulfur batteries. Therefore, it maintains 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201806724</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>absorption effects ; Carbon nanotubes ; Catalysis ; Cathodes ; Cobalt ; cobalt‐doped SnS2 ; Decay rate ; electrocatalyst effects ; Electrochemical analysis ; high sulfur loading ; Li sulfur batteries ; Materials science ; Polysulfides ; Reaction kinetics ; Substrates ; Sulfur ; Tin disulfide</subject><ispartof>Advanced functional materials, 2019-02, Vol.29 (8), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5399-1440 ; 0000-0003-0374-1245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gao, Xuejie</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Li, Minsi</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wang, Jiwei</creatorcontrib><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Wang, Sizhe</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><title>Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries</title><title>Advanced functional materials</title><description>The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm−2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g−1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g−1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries. The S/NCNT@Co‐SnS2 material acts as not only an effective shuttle‐suppressing shield for polysulfide but also an electrocatalyst in improving sulfur utilization and cycling stability for high‐sulfur‐loading lithium‐sulfur batteries. Therefore, it maintains 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2.</description><subject>absorption effects</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Cathodes</subject><subject>Cobalt</subject><subject>cobalt‐doped SnS2</subject><subject>Decay rate</subject><subject>electrocatalyst effects</subject><subject>Electrochemical analysis</subject><subject>high sulfur loading</subject><subject>Li sulfur batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Substrates</subject><subject>Sulfur</subject><subject>Tin disulfide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqWwZW2JdcCvvJYhbSlSEIuAxM5yEzt1lcbFdqmygk_gG_kSUoq6mrmaO3c0B4BrjG4xQuRO1Gp9SxBOUBQTdgJGOMJRQBFJTo89fjsHF86tEMJxTNkIfOZmIVr_8_U9MRtZw7IrCdxpv4STrWhhVnn9IWEuOy-tg0bBsu-kbbTzuoLZwhm78dp0w34uvGh7px2cKiUrD5WxcK6b5TArYWFErbsGFvpP3gs_BGrpLsGZEq2TV_91DF5n05d8HhTPD495VgQNQYQFNBICCSUwplWVqrROkphSgtQCCUbjania1WEYJyokKhEsUqwKo5DVUS2RwhEdg5tD7saa9610nq_M1nbDSU5wQlGKaIwHV3pw7XQre76xei1szzHie8J8T5gfCfNsMns6KvoLUkJ1lQ</recordid><startdate>20190221</startdate><enddate>20190221</enddate><creator>Gao, Xuejie</creator><creator>Yang, Xiaofei</creator><creator>Li, Minsi</creator><creator>Sun, Qian</creator><creator>Liang, Jianneng</creator><creator>Luo, Jing</creator><creator>Wang, Jiwei</creator><creator>Li, Weihan</creator><creator>Liang, Jianwen</creator><creator>Liu, Yulong</creator><creator>Wang, Sizhe</creator><creator>Hu, Yongfeng</creator><creator>Xiao, Qunfeng</creator><creator>Li, Ruying</creator><creator>Sham, Tsun‐Kong</creator><creator>Sun, Xueliang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5399-1440</orcidid><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid></search><sort><creationdate>20190221</creationdate><title>Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries</title><author>Gao, Xuejie ; Yang, Xiaofei ; Li, Minsi ; Sun, Qian ; Liang, Jianneng ; Luo, Jing ; Wang, Jiwei ; Li, Weihan ; Liang, Jianwen ; Liu, Yulong ; Wang, Sizhe ; Hu, Yongfeng ; Xiao, Qunfeng ; Li, Ruying ; Sham, Tsun‐Kong ; Sun, Xueliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2024-36aa0afa113cc9f9d8873320fb0a437c1804d5578f52f8a46f4c5654d6de0f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>absorption effects</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Cathodes</topic><topic>Cobalt</topic><topic>cobalt‐doped SnS2</topic><topic>Decay rate</topic><topic>electrocatalyst effects</topic><topic>Electrochemical analysis</topic><topic>high sulfur loading</topic><topic>Li sulfur batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Substrates</topic><topic>Sulfur</topic><topic>Tin disulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xuejie</creatorcontrib><creatorcontrib>Yang, Xiaofei</creatorcontrib><creatorcontrib>Li, Minsi</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>Liang, Jianneng</creatorcontrib><creatorcontrib>Luo, Jing</creatorcontrib><creatorcontrib>Wang, Jiwei</creatorcontrib><creatorcontrib>Li, Weihan</creatorcontrib><creatorcontrib>Liang, Jianwen</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Wang, Sizhe</creatorcontrib><creatorcontrib>Hu, Yongfeng</creatorcontrib><creatorcontrib>Xiao, Qunfeng</creatorcontrib><creatorcontrib>Li, Ruying</creatorcontrib><creatorcontrib>Sham, Tsun‐Kong</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xuejie</au><au>Yang, Xiaofei</au><au>Li, Minsi</au><au>Sun, Qian</au><au>Liang, Jianneng</au><au>Luo, Jing</au><au>Wang, Jiwei</au><au>Li, Weihan</au><au>Liang, Jianwen</au><au>Liu, Yulong</au><au>Wang, Sizhe</au><au>Hu, Yongfeng</au><au>Xiao, Qunfeng</au><au>Li, Ruying</au><au>Sham, Tsun‐Kong</au><au>Sun, Xueliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2019-02-21</date><risdate>2019</risdate><volume>29</volume><issue>8</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm−2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g−1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g−1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries. The S/NCNT@Co‐SnS2 material acts as not only an effective shuttle‐suppressing shield for polysulfide but also an electrocatalyst in improving sulfur utilization and cycling stability for high‐sulfur‐loading lithium‐sulfur batteries. Therefore, it maintains 1004.3 mA h g−1 after 100 cycles at a current density of 1.3 mA cm−2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201806724</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5399-1440</orcidid><orcidid>https://orcid.org/0000-0003-0374-1245</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-02, Vol.29 (8), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2183090371
source Wiley
subjects absorption effects
Carbon nanotubes
Catalysis
Cathodes
Cobalt
cobalt‐doped SnS2
Decay rate
electrocatalyst effects
Electrochemical analysis
high sulfur loading
Li sulfur batteries
Materials science
Polysulfides
Reaction kinetics
Substrates
Sulfur
Tin disulfide
title Cobalt‐Doped SnS2 with Dual Active Centers of Synergistic Absorption‐Catalysis Effect for High‐S Loading Li‐S Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cobalt%E2%80%90Doped%20SnS2%20with%20Dual%20Active%20Centers%20of%20Synergistic%20Absorption%E2%80%90Catalysis%20Effect%20for%20High%E2%80%90S%20Loading%20Li%E2%80%90S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Gao,%20Xuejie&rft.date=2019-02-21&rft.volume=29&rft.issue=8&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201806724&rft_dat=%3Cproquest_wiley%3E2183090371%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g2024-36aa0afa113cc9f9d8873320fb0a437c1804d5578f52f8a46f4c5654d6de0f163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183090371&rft_id=info:pmid/&rfr_iscdi=true