Loading…

Vortex-induced transient stall

This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that...

Full description

Saved in:
Bibliographic Details
Published in:Archive of applied mechanics (1991) 2019-02, Vol.89 (2), p.307-312
Main Authors: Pelz, P. F., Taubert, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323
cites cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323
container_end_page 312
container_issue 2
container_start_page 307
container_title Archive of applied mechanics (1991)
container_volume 89
creator Pelz, P. F.
Taubert, P.
description This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency Ω ind < 0.5 Ω . Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.
doi_str_mv 10.1007/s00419-018-1468-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183261997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183261997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoWEcfwI0MuI7em_8sZdBRGHCjbkObptJhbMckBX17M1Rw5epuzvkuHEIuEW4QQN8mAIGWAhqKQhkqj0iFgjMKyuAxqcByS1FyfkrOUtpCwSWDily9jTGHL9oP7eRDu8yxHlIfhrxMud7tzslJV-9SuPi9C_L6cP-yeqSb5_XT6m5DPUeVKVN1w6UX3thWN4prEYwCbCRYzVgbNAQTBFPYMJQmWNspbZQH39StspzxBbmed_dx_JxCym47TnEoLx1Dw4tprS4UzpSPY0oxdG4f-486fjsEd8jg5gyuZHCHDE4Wh81OKuzwHuLf8v_SDzvQXUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183261997</pqid></control><display><type>article</type><title>Vortex-induced transient stall</title><source>Springer Nature</source><creator>Pelz, P. F. ; Taubert, P.</creator><creatorcontrib>Pelz, P. F. ; Taubert, P.</creatorcontrib><description>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency Ω ind &lt; 0.5 Ω . Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-018-1468-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Circular tubes ; Classical Mechanics ; Engineering ; Flow separation ; Flow theory ; Fluid dynamics ; Fluid flow ; Original ; Potential flow ; Stagnation point ; Theoretical and Applied Mechanics ; Turbomachinery ; Vortex rings ; Vortices</subject><ispartof>Archive of applied mechanics (1991), 2019-02, Vol.89 (2), p.307-312</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</citedby><cites>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pelz, P. F.</creatorcontrib><creatorcontrib>Taubert, P.</creatorcontrib><title>Vortex-induced transient stall</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency Ω ind &lt; 0.5 Ω . Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</description><subject>Circular tubes</subject><subject>Classical Mechanics</subject><subject>Engineering</subject><subject>Flow separation</subject><subject>Flow theory</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Original</subject><subject>Potential flow</subject><subject>Stagnation point</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbomachinery</subject><subject>Vortex rings</subject><subject>Vortices</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoWEcfwI0MuI7em_8sZdBRGHCjbkObptJhbMckBX17M1Rw5epuzvkuHEIuEW4QQN8mAIGWAhqKQhkqj0iFgjMKyuAxqcByS1FyfkrOUtpCwSWDily9jTGHL9oP7eRDu8yxHlIfhrxMud7tzslJV-9SuPi9C_L6cP-yeqSb5_XT6m5DPUeVKVN1w6UX3thWN4prEYwCbCRYzVgbNAQTBFPYMJQmWNspbZQH39StspzxBbmed_dx_JxCym47TnEoLx1Dw4tprS4UzpSPY0oxdG4f-486fjsEd8jg5gyuZHCHDE4Wh81OKuzwHuLf8v_SDzvQXUI</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Pelz, P. F.</creator><creator>Taubert, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Vortex-induced transient stall</title><author>Pelz, P. F. ; Taubert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circular tubes</topic><topic>Classical Mechanics</topic><topic>Engineering</topic><topic>Flow separation</topic><topic>Flow theory</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Original</topic><topic>Potential flow</topic><topic>Stagnation point</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbomachinery</topic><topic>Vortex rings</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelz, P. F.</creatorcontrib><creatorcontrib>Taubert, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelz, P. F.</au><au>Taubert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex-induced transient stall</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>89</volume><issue>2</issue><spage>307</spage><epage>312</epage><pages>307-312</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency Ω ind &lt; 0.5 Ω . Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-018-1468-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2019-02, Vol.89 (2), p.307-312
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2183261997
source Springer Nature
subjects Circular tubes
Classical Mechanics
Engineering
Flow separation
Flow theory
Fluid dynamics
Fluid flow
Original
Potential flow
Stagnation point
Theoretical and Applied Mechanics
Turbomachinery
Vortex rings
Vortices
title Vortex-induced transient stall
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex-induced%20transient%20stall&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Pelz,%20P.%20F.&rft.date=2019-02-15&rft.volume=89&rft.issue=2&rft.spage=307&rft.epage=312&rft.pages=307-312&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-018-1468-5&rft_dat=%3Cproquest_cross%3E2183261997%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183261997&rft_id=info:pmid/&rfr_iscdi=true