Loading…
Vortex-induced transient stall
This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency Ω . Two results emerge out of the analytic research: first it is shown that...
Saved in:
Published in: | Archive of applied mechanics (1991) 2019-02, Vol.89 (2), p.307-312 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323 |
container_end_page | 312 |
container_issue | 2 |
container_start_page | 307 |
container_title | Archive of applied mechanics (1991) |
container_volume | 89 |
creator | Pelz, P. F. Taubert, P. |
description | This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency
Ω
. Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency
Ω
ind
<
0.5
Ω
. Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery. |
doi_str_mv | 10.1007/s00419-018-1468-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183261997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183261997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoWEcfwI0MuI7em_8sZdBRGHCjbkObptJhbMckBX17M1Rw5epuzvkuHEIuEW4QQN8mAIGWAhqKQhkqj0iFgjMKyuAxqcByS1FyfkrOUtpCwSWDily9jTGHL9oP7eRDu8yxHlIfhrxMud7tzslJV-9SuPi9C_L6cP-yeqSb5_XT6m5DPUeVKVN1w6UX3thWN4prEYwCbCRYzVgbNAQTBFPYMJQmWNspbZQH39StspzxBbmed_dx_JxCym47TnEoLx1Dw4tprS4UzpSPY0oxdG4f-486fjsEd8jg5gyuZHCHDE4Wh81OKuzwHuLf8v_SDzvQXUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183261997</pqid></control><display><type>article</type><title>Vortex-induced transient stall</title><source>Springer Nature</source><creator>Pelz, P. F. ; Taubert, P.</creator><creatorcontrib>Pelz, P. F. ; Taubert, P.</creatorcontrib><description>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency
Ω
. Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency
Ω
ind
<
0.5
Ω
. Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-018-1468-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Circular tubes ; Classical Mechanics ; Engineering ; Flow separation ; Flow theory ; Fluid dynamics ; Fluid flow ; Original ; Potential flow ; Stagnation point ; Theoretical and Applied Mechanics ; Turbomachinery ; Vortex rings ; Vortices</subject><ispartof>Archive of applied mechanics (1991), 2019-02, Vol.89 (2), p.307-312</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</citedby><cites>FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pelz, P. F.</creatorcontrib><creatorcontrib>Taubert, P.</creatorcontrib><title>Vortex-induced transient stall</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency
Ω
. Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency
Ω
ind
<
0.5
Ω
. Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</description><subject>Circular tubes</subject><subject>Classical Mechanics</subject><subject>Engineering</subject><subject>Flow separation</subject><subject>Flow theory</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Original</subject><subject>Potential flow</subject><subject>Stagnation point</subject><subject>Theoretical and Applied Mechanics</subject><subject>Turbomachinery</subject><subject>Vortex rings</subject><subject>Vortices</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAURoMoWEcfwI0MuI7em_8sZdBRGHCjbkObptJhbMckBX17M1Rw5epuzvkuHEIuEW4QQN8mAIGWAhqKQhkqj0iFgjMKyuAxqcByS1FyfkrOUtpCwSWDily9jTGHL9oP7eRDu8yxHlIfhrxMud7tzslJV-9SuPi9C_L6cP-yeqSb5_XT6m5DPUeVKVN1w6UX3thWN4prEYwCbCRYzVgbNAQTBFPYMJQmWNspbZQH39StspzxBbmed_dx_JxCym47TnEoLx1Dw4tprS4UzpSPY0oxdG4f-486fjsEd8jg5gyuZHCHDE4Wh81OKuzwHuLf8v_SDzvQXUI</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Pelz, P. F.</creator><creator>Taubert, P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190215</creationdate><title>Vortex-induced transient stall</title><author>Pelz, P. F. ; Taubert, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Circular tubes</topic><topic>Classical Mechanics</topic><topic>Engineering</topic><topic>Flow separation</topic><topic>Flow theory</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Original</topic><topic>Potential flow</topic><topic>Stagnation point</topic><topic>Theoretical and Applied Mechanics</topic><topic>Turbomachinery</topic><topic>Vortex rings</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pelz, P. F.</creatorcontrib><creatorcontrib>Taubert, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pelz, P. F.</au><au>Taubert, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex-induced transient stall</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2019-02-15</date><risdate>2019</risdate><volume>89</volume><issue>2</issue><spage>307</spage><epage>312</epage><pages>307-312</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>This study analyzes the induced flow by a coaxial vortex ring inside a circular tube applying vortex theory and potential flow theory. The vortex ring itself is generated by bound vortices rotating with the angular frequency
Ω
. Two results emerge out of the analytic research: first it is shown that induction causes the rotation of the vortex ring. It rotates at the sub-synchronous frequency
Ω
ind
<
0.5
Ω
. Second, the ring vortex itself induces an axial velocity at the tube wall. Superimposed with the axial main flow, this results in a stagnation point. Since the vortex strength increases in time, the stagnation point moves upstream. This kinematic effect may falsely be interpreted as a dynamic boundary layer separation. Hence, the results may give new insights into transient stall phenomena in axial turbomachinery.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-018-1468-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2019-02, Vol.89 (2), p.307-312 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_2183261997 |
source | Springer Nature |
subjects | Circular tubes Classical Mechanics Engineering Flow separation Flow theory Fluid dynamics Fluid flow Original Potential flow Stagnation point Theoretical and Applied Mechanics Turbomachinery Vortex rings Vortices |
title | Vortex-induced transient stall |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex-induced%20transient%20stall&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Pelz,%20P.%20F.&rft.date=2019-02-15&rft.volume=89&rft.issue=2&rft.spage=307&rft.epage=312&rft.pages=307-312&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-018-1468-5&rft_dat=%3Cproquest_cross%3E2183261997%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-26ab35c4c89d7b6374e8601b509722de70e8e4261b2158e99f6786c0cbad69323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183261997&rft_id=info:pmid/&rfr_iscdi=true |