Loading…

Palaeoseismic structures in Quaternary sediments of Hamburg (NW Germany), earthquake evidence during the younger Weichselian and Holocene

Investigations at a construction site in Hamburg (NW Germany) exposed palaeoseismic structures from moderate to strong earthquakes. Based on the large size of large blowout clastic dykes being up to 2.0 m wide and 2.5 m high, as well as the occurrence of infill structures, erratics/rafts of up to 9 ...

Full description

Saved in:
Bibliographic Details
Published in:International journal of earth sciences : Geologische Rundschau 2019-04, Vol.108 (3), p.845-861
Main Author: Grube, Alf
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Investigations at a construction site in Hamburg (NW Germany) exposed palaeoseismic structures from moderate to strong earthquakes. Based on the large size of large blowout clastic dykes being up to 2.0 m wide and 2.5 m high, as well as the occurrence of infill structures, erratics/rafts of up to 9 kg in weight, seismites s.s. and decimetre-scale folds or seismoslumps, the magnitude of the earthquakes could be in the order of up to M  ≥ 6. This is significantly higher than previously assumed for prehistorical seismic events in NW Germany. The structures are assigned to earthquakes possibly related to NW–SE-oriented faults that are evident in Lidar and SAR surface interpretations. Organic material from blowout-related infill bowls, assumed to be synchronously formed collapse depressions, are analysed for 14 C ages. The dates reveal ages between 31,500 and 1200 14 C cal a BP, indicating five prehistoric earthquakes. Accordingly, three of these earthquakes occurred before and after the main Weichselian glaciation phase (ca. 31,350, 26,850 and 18,980 14 C cal a BP), and two occurred during the Subatlantic (ca. 4900 and 1200 14 C cal a BP). The Weichselian events indicate seismic activity in the ice marginal zone during or following interstadials/Dansgaard–Oeschger events, as well as suggesting that advancing ice sheets foster earthquakes.
ISSN:1437-3254
1437-3262
DOI:10.1007/s00531-019-01681-2