Loading…

Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives

Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude nati...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of physiology 2019-02, Vol.81 (1), p.561-583
Main Authors: McClelland, Grant B, Scott, Graham R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3
cites cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3
container_end_page 583
container_issue 1
container_start_page 561
container_title Annual review of physiology
container_volume 81
creator McClelland, Grant B
Scott, Graham R
description Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO 2 max. This is associated with enhanced flux capacity through the O 2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O 2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O 2 . Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O 2 and substrate delivery and utilization by mitochondria.
doi_str_mv 10.1146/annurev-physiol-021317-121527
format article
fullrecord <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_journals_2183666086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183666086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</originalsourceid><addsrcrecordid>eNqVkU1v1DAQhi0EokvhLyBLCImLqe34Ixw4LFVhkVpACA6crEkyZl0l8dZOFvbf45ItB249jWb0zDuWH0JeCv5aCGXOYBznhHu22x5yiD3jUlTCMiGFlvYBWQmtNBO61g_JinNjmJK2PiFPcr7mpedKPSYnFZfaWGlX5MfFPvZ77OgVtlsYQx4yjZ6uMcUmtPQLJh_TAGOLFMaObg67-DsA_Yo55OnvOIx0E35u2bqfwjR3SD_BFPaYn5JHHvqMz471lHx_f_HtfMMuP3_4eL6-ZKCMnZg1HDW3XvsWamUV99BWiiswRmOtuXhjPPCqksCVbhpT66aVuoMyqS14qE7JqyV3l-LNjHlyQ8gt9j2MGOfspBCVNErpqqAv_kOv45zG8rpC1ZUxhtemUG8Xqk0x54Te7VIYIB2c4O7WgTs6cEcHbnHgFgdl__nxytwM2P3bvvv0ArxbgNsc6EtSwF_5nlf-AE0rnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183666086</pqid></control><display><type>article</type><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><source>Annual Reviews Open Access</source><creator>McClelland, Grant B ; Scott, Graham R</creator><creatorcontrib>McClelland, Grant B ; Scott, Graham R</creatorcontrib><description>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO 2 max. This is associated with enhanced flux capacity through the O 2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O 2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O 2 . Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O 2 and substrate delivery and utilization by mitochondria.</description><identifier>ISSN: 0066-4278</identifier><identifier>EISSN: 1545-1585</identifier><identifier>DOI: 10.1146/annurev-physiol-021317-121527</identifier><identifier>PMID: 30256727</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Aerobic capacity ; Attenuation ; Biological evolution ; Carbohydrates ; exercise ; Gene expression ; High altitude ; Hypoxia ; Lipid peroxidation ; Lipids ; Metabolic pathways ; Mitochondria ; Muscles ; Oxidation ; oxygen ; Oxygen consumption ; Positive selection ; Substrates ; Thermogenesis ; Transport</subject><ispartof>Annual review of physiology, 2019-02, Vol.81 (1), p.561-583</ispartof><rights>Copyright Annual Reviews, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</citedby><cites>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021317-121527?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021317-121527$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,78360,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-physiol-021317-121527$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McClelland, Grant B</creatorcontrib><creatorcontrib>Scott, Graham R</creatorcontrib><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><title>Annual review of physiology</title><addtitle>Annu Rev Physiol</addtitle><description>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO 2 max. This is associated with enhanced flux capacity through the O 2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O 2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O 2 . Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O 2 and substrate delivery and utilization by mitochondria.</description><subject>Aerobic capacity</subject><subject>Attenuation</subject><subject>Biological evolution</subject><subject>Carbohydrates</subject><subject>exercise</subject><subject>Gene expression</subject><subject>High altitude</subject><subject>Hypoxia</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolic pathways</subject><subject>Mitochondria</subject><subject>Muscles</subject><subject>Oxidation</subject><subject>oxygen</subject><subject>Oxygen consumption</subject><subject>Positive selection</subject><subject>Substrates</subject><subject>Thermogenesis</subject><subject>Transport</subject><issn>0066-4278</issn><issn>1545-1585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVkU1v1DAQhi0EokvhLyBLCImLqe34Ixw4LFVhkVpACA6crEkyZl0l8dZOFvbf45ItB249jWb0zDuWH0JeCv5aCGXOYBznhHu22x5yiD3jUlTCMiGFlvYBWQmtNBO61g_JinNjmJK2PiFPcr7mpedKPSYnFZfaWGlX5MfFPvZ77OgVtlsYQx4yjZ6uMcUmtPQLJh_TAGOLFMaObg67-DsA_Yo55OnvOIx0E35u2bqfwjR3SD_BFPaYn5JHHvqMz471lHx_f_HtfMMuP3_4eL6-ZKCMnZg1HDW3XvsWamUV99BWiiswRmOtuXhjPPCqksCVbhpT66aVuoMyqS14qE7JqyV3l-LNjHlyQ8gt9j2MGOfspBCVNErpqqAv_kOv45zG8rpC1ZUxhtemUG8Xqk0x54Te7VIYIB2c4O7WgTs6cEcHbnHgFgdl__nxytwM2P3bvvv0ArxbgNsc6EtSwF_5nlf-AE0rnew</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>McClelland, Grant B</creator><creator>Scott, Graham R</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190210</creationdate><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><author>McClelland, Grant B ; Scott, Graham R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic capacity</topic><topic>Attenuation</topic><topic>Biological evolution</topic><topic>Carbohydrates</topic><topic>exercise</topic><topic>Gene expression</topic><topic>High altitude</topic><topic>Hypoxia</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolic pathways</topic><topic>Mitochondria</topic><topic>Muscles</topic><topic>Oxidation</topic><topic>oxygen</topic><topic>Oxygen consumption</topic><topic>Positive selection</topic><topic>Substrates</topic><topic>Thermogenesis</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClelland, Grant B</creatorcontrib><creatorcontrib>Scott, Graham R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McClelland, Grant B</au><au>Scott, Graham R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</atitle><jtitle>Annual review of physiology</jtitle><addtitle>Annu Rev Physiol</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>561</spage><epage>583</epage><pages>561-583</pages><issn>0066-4278</issn><eissn>1545-1585</eissn><abstract>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO 2 max. This is associated with enhanced flux capacity through the O 2 transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O 2 transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O 2 . Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O 2 and substrate delivery and utilization by mitochondria.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>30256727</pmid><doi>10.1146/annurev-physiol-021317-121527</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0066-4278
ispartof Annual review of physiology, 2019-02, Vol.81 (1), p.561-583
issn 0066-4278
1545-1585
language eng
recordid cdi_proquest_journals_2183666086
source Annual Reviews Open Access
subjects Aerobic capacity
Attenuation
Biological evolution
Carbohydrates
exercise
Gene expression
High altitude
Hypoxia
Lipid peroxidation
Lipids
Metabolic pathways
Mitochondria
Muscles
Oxidation
oxygen
Oxygen consumption
Positive selection
Substrates
Thermogenesis
Transport
title Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolved%20Mechanisms%20of%20Aerobic%20Performance%20and%20Hypoxia%20Resistance%20in%20High-Altitude%20Natives&rft.jtitle=Annual%20review%20of%20physiology&rft.au=McClelland,%20Grant%20B&rft.date=2019-02-10&rft.volume=81&rft.issue=1&rft.spage=561&rft.epage=583&rft.pages=561-583&rft.issn=0066-4278&rft.eissn=1545-1585&rft_id=info:doi/10.1146/annurev-physiol-021317-121527&rft_dat=%3Cproquest_ZYWBE%3E2183666086%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183666086&rft_id=info:pmid/30256727&rfr_iscdi=true