Loading…
Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives
Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO 2 max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude nati...
Saved in:
Published in: | Annual review of physiology 2019-02, Vol.81 (1), p.561-583 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3 |
---|---|
cites | cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3 |
container_end_page | 583 |
container_issue | 1 |
container_start_page | 561 |
container_title | Annual review of physiology |
container_volume | 81 |
creator | McClelland, Grant B Scott, Graham R |
description | Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO
2
max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO
2
max. This is associated with enhanced flux capacity through the O
2
transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O
2
transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O
2
. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O
2
and substrate delivery and utilization by mitochondria. |
doi_str_mv | 10.1146/annurev-physiol-021317-121527 |
format | article |
fullrecord | <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_journals_2183666086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183666086</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</originalsourceid><addsrcrecordid>eNqVkU1v1DAQhi0EokvhLyBLCImLqe34Ixw4LFVhkVpACA6crEkyZl0l8dZOFvbf45ItB249jWb0zDuWH0JeCv5aCGXOYBznhHu22x5yiD3jUlTCMiGFlvYBWQmtNBO61g_JinNjmJK2PiFPcr7mpedKPSYnFZfaWGlX5MfFPvZ77OgVtlsYQx4yjZ6uMcUmtPQLJh_TAGOLFMaObg67-DsA_Yo55OnvOIx0E35u2bqfwjR3SD_BFPaYn5JHHvqMz471lHx_f_HtfMMuP3_4eL6-ZKCMnZg1HDW3XvsWamUV99BWiiswRmOtuXhjPPCqksCVbhpT66aVuoMyqS14qE7JqyV3l-LNjHlyQ8gt9j2MGOfspBCVNErpqqAv_kOv45zG8rpC1ZUxhtemUG8Xqk0x54Te7VIYIB2c4O7WgTs6cEcHbnHgFgdl__nxytwM2P3bvvv0ArxbgNsc6EtSwF_5nlf-AE0rnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183666086</pqid></control><display><type>article</type><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><source>Annual Reviews Open Access</source><creator>McClelland, Grant B ; Scott, Graham R</creator><creatorcontrib>McClelland, Grant B ; Scott, Graham R</creatorcontrib><description>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO
2
max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO
2
max. This is associated with enhanced flux capacity through the O
2
transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O
2
transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O
2
. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O
2
and substrate delivery and utilization by mitochondria.</description><identifier>ISSN: 0066-4278</identifier><identifier>EISSN: 1545-1585</identifier><identifier>DOI: 10.1146/annurev-physiol-021317-121527</identifier><identifier>PMID: 30256727</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Aerobic capacity ; Attenuation ; Biological evolution ; Carbohydrates ; exercise ; Gene expression ; High altitude ; Hypoxia ; Lipid peroxidation ; Lipids ; Metabolic pathways ; Mitochondria ; Muscles ; Oxidation ; oxygen ; Oxygen consumption ; Positive selection ; Substrates ; Thermogenesis ; Transport</subject><ispartof>Annual review of physiology, 2019-02, Vol.81 (1), p.561-583</ispartof><rights>Copyright Annual Reviews, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</citedby><cites>FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021317-121527?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-physiol-021317-121527$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>314,780,784,27892,27924,27925,78360,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-physiol-021317-121527$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256727$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McClelland, Grant B</creatorcontrib><creatorcontrib>Scott, Graham R</creatorcontrib><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><title>Annual review of physiology</title><addtitle>Annu Rev Physiol</addtitle><description>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO
2
max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO
2
max. This is associated with enhanced flux capacity through the O
2
transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O
2
transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O
2
. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O
2
and substrate delivery and utilization by mitochondria.</description><subject>Aerobic capacity</subject><subject>Attenuation</subject><subject>Biological evolution</subject><subject>Carbohydrates</subject><subject>exercise</subject><subject>Gene expression</subject><subject>High altitude</subject><subject>Hypoxia</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Metabolic pathways</subject><subject>Mitochondria</subject><subject>Muscles</subject><subject>Oxidation</subject><subject>oxygen</subject><subject>Oxygen consumption</subject><subject>Positive selection</subject><subject>Substrates</subject><subject>Thermogenesis</subject><subject>Transport</subject><issn>0066-4278</issn><issn>1545-1585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqVkU1v1DAQhi0EokvhLyBLCImLqe34Ixw4LFVhkVpACA6crEkyZl0l8dZOFvbf45ItB249jWb0zDuWH0JeCv5aCGXOYBznhHu22x5yiD3jUlTCMiGFlvYBWQmtNBO61g_JinNjmJK2PiFPcr7mpedKPSYnFZfaWGlX5MfFPvZ77OgVtlsYQx4yjZ6uMcUmtPQLJh_TAGOLFMaObg67-DsA_Yo55OnvOIx0E35u2bqfwjR3SD_BFPaYn5JHHvqMz471lHx_f_HtfMMuP3_4eL6-ZKCMnZg1HDW3XvsWamUV99BWiiswRmOtuXhjPPCqksCVbhpT66aVuoMyqS14qE7JqyV3l-LNjHlyQ8gt9j2MGOfspBCVNErpqqAv_kOv45zG8rpC1ZUxhtemUG8Xqk0x54Te7VIYIB2c4O7WgTs6cEcHbnHgFgdl__nxytwM2P3bvvv0ArxbgNsc6EtSwF_5nlf-AE0rnew</recordid><startdate>20190210</startdate><enddate>20190210</enddate><creator>McClelland, Grant B</creator><creator>Scott, Graham R</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190210</creationdate><title>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</title><author>McClelland, Grant B ; Scott, Graham R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerobic capacity</topic><topic>Attenuation</topic><topic>Biological evolution</topic><topic>Carbohydrates</topic><topic>exercise</topic><topic>Gene expression</topic><topic>High altitude</topic><topic>Hypoxia</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Metabolic pathways</topic><topic>Mitochondria</topic><topic>Muscles</topic><topic>Oxidation</topic><topic>oxygen</topic><topic>Oxygen consumption</topic><topic>Positive selection</topic><topic>Substrates</topic><topic>Thermogenesis</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClelland, Grant B</creatorcontrib><creatorcontrib>Scott, Graham R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McClelland, Grant B</au><au>Scott, Graham R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives</atitle><jtitle>Annual review of physiology</jtitle><addtitle>Annu Rev Physiol</addtitle><date>2019-02-10</date><risdate>2019</risdate><volume>81</volume><issue>1</issue><spage>561</spage><epage>583</epage><pages>561-583</pages><issn>0066-4278</issn><eissn>1545-1585</eissn><abstract>Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VO
2
max) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VO
2
max. This is associated with enhanced flux capacity through the O
2
transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O
2
transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O
2
. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O
2
and substrate delivery and utilization by mitochondria.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>30256727</pmid><doi>10.1146/annurev-physiol-021317-121527</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0066-4278 |
ispartof | Annual review of physiology, 2019-02, Vol.81 (1), p.561-583 |
issn | 0066-4278 1545-1585 |
language | eng |
recordid | cdi_proquest_journals_2183666086 |
source | Annual Reviews Open Access |
subjects | Aerobic capacity Attenuation Biological evolution Carbohydrates exercise Gene expression High altitude Hypoxia Lipid peroxidation Lipids Metabolic pathways Mitochondria Muscles Oxidation oxygen Oxygen consumption Positive selection Substrates Thermogenesis Transport |
title | Evolved Mechanisms of Aerobic Performance and Hypoxia Resistance in High-Altitude Natives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A45%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolved%20Mechanisms%20of%20Aerobic%20Performance%20and%20Hypoxia%20Resistance%20in%20High-Altitude%20Natives&rft.jtitle=Annual%20review%20of%20physiology&rft.au=McClelland,%20Grant%20B&rft.date=2019-02-10&rft.volume=81&rft.issue=1&rft.spage=561&rft.epage=583&rft.pages=561-583&rft.issn=0066-4278&rft.eissn=1545-1585&rft_id=info:doi/10.1146/annurev-physiol-021317-121527&rft_dat=%3Cproquest_ZYWBE%3E2183666086%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a467t-760e507f5fca84740fac3404a665e850196fa0332a045bb685bc25da33287afa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183666086&rft_id=info:pmid/30256727&rfr_iscdi=true |