Loading…
Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells
Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by prot...
Saved in:
Published in: | Journal of cellular physiology 2019-06, Vol.234 (6), p.9077-9092 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463 |
---|---|
cites | cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463 |
container_end_page | 9092 |
container_issue | 6 |
container_start_page | 9077 |
container_title | Journal of cellular physiology |
container_volume | 234 |
creator | Milone, Maria Rita Lombardi, Rita Roca, Maria Serena Bruzzese, Francesca Addi, Laura Pucci, Biagio Budillon, Alfredo |
description | Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.
By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance. |
doi_str_mv | 10.1002/jcp.27585 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183984463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183984463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</originalsourceid><addsrcrecordid>eNp1kE1PwyAYx4nRuDk9-AUMiScP3aCUtRzN4msWNdF7Qyk4FvoitFsaL34EP6OfRGqnN0_PA_z4PfAH4BSjKUYonK1FPQ1jmtA9MMaIxUE0p-E-GPszHDAa4RE4cm6NEGKMkEMwIojMQ0rIGLw_VBtpYM2b1ZZ3DupyU5mNzH0DhXa14Y3vrHTaNbwUEupclo1W2iNZBzmsbdXIqtDCQV77BRer_m5ZlV8fn67gxvgqpDHQtOUrFL3Ewn7DHYMDxY2TJ7s6Ac_XVy-L22D5eHO3uFwGglBCAyEjSqSMFKIJiWMVKsIITqQQNEQiYUgJKvwvY0ZRlikcxwTlLI8zxbNoTibgfLD6x7210jXpumpt6QemIU4ISyIPeepioIStnLNSpbXVBbddilHah5z6kNOfkD17tjO2WSHzP_I3VQ_MBmCrjez-N6X3i6dB-Q0o0onq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183984463</pqid></control><display><type>article</type><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><source>Wiley</source><creator>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</creator><creatorcontrib>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</creatorcontrib><description>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.
By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27585</identifier><identifier>PMID: 30362533</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>A549 Cells ; Animals ; Antineoplastic Agents - pharmacology ; Biomarkers ; Cancer ; Carcinogenesis ; Carcinogens ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Chemotherapy ; Cisplatin ; Cisplatin - therapeutic use ; cisplatin resistance ; Clustering ; Databases, Protein ; Drug Resistance, Neoplasm ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Epithelial-Mesenchymal Transition ; epithelial‐to‐mesenchymal transition ; Female ; Humans ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Medical prognosis ; Mesenchyme ; Mice, Nude ; Neoplastic Stem Cells - metabolism ; Non-small cell lung carcinoma ; NSCLC ; Patients ; Platinum ; Prognosis ; Protein Folding ; Protein Interaction Maps ; Proteins ; Proteomics ; Signal Transduction ; Stem cells ; Therapeutic applications ; Tumor Burden - drug effects ; Vimentin ; Vimentin - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>Journal of cellular physiology, 2019-06, Vol.234 (6), p.9077-9092</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</citedby><cites>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</cites><orcidid>0000-0002-6330-6053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milone, Maria Rita</creatorcontrib><creatorcontrib>Lombardi, Rita</creatorcontrib><creatorcontrib>Roca, Maria Serena</creatorcontrib><creatorcontrib>Bruzzese, Francesca</creatorcontrib><creatorcontrib>Addi, Laura</creatorcontrib><creatorcontrib>Pucci, Biagio</creatorcontrib><creatorcontrib>Budillon, Alfredo</creatorcontrib><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.
By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Chemotherapy</subject><subject>Cisplatin</subject><subject>Cisplatin - therapeutic use</subject><subject>cisplatin resistance</subject><subject>Clustering</subject><subject>Databases, Protein</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>epithelial‐to‐mesenchymal transition</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical prognosis</subject><subject>Mesenchyme</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Non-small cell lung carcinoma</subject><subject>NSCLC</subject><subject>Patients</subject><subject>Platinum</subject><subject>Prognosis</subject><subject>Protein Folding</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><subject>Tumor Burden - drug effects</subject><subject>Vimentin</subject><subject>Vimentin - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwyAYx4nRuDk9-AUMiScP3aCUtRzN4msWNdF7Qyk4FvoitFsaL34EP6OfRGqnN0_PA_z4PfAH4BSjKUYonK1FPQ1jmtA9MMaIxUE0p-E-GPszHDAa4RE4cm6NEGKMkEMwIojMQ0rIGLw_VBtpYM2b1ZZ3DupyU5mNzH0DhXa14Y3vrHTaNbwUEupclo1W2iNZBzmsbdXIqtDCQV77BRer_m5ZlV8fn67gxvgqpDHQtOUrFL3Ewn7DHYMDxY2TJ7s6Ac_XVy-L22D5eHO3uFwGglBCAyEjSqSMFKIJiWMVKsIITqQQNEQiYUgJKvwvY0ZRlikcxwTlLI8zxbNoTibgfLD6x7210jXpumpt6QemIU4ISyIPeepioIStnLNSpbXVBbddilHah5z6kNOfkD17tjO2WSHzP_I3VQ_MBmCrjez-N6X3i6dB-Q0o0onq</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Milone, Maria Rita</creator><creator>Lombardi, Rita</creator><creator>Roca, Maria Serena</creator><creator>Bruzzese, Francesca</creator><creator>Addi, Laura</creator><creator>Pucci, Biagio</creator><creator>Budillon, Alfredo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6330-6053</orcidid></search><sort><creationdate>201906</creationdate><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><author>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Chemotherapy</topic><topic>Cisplatin</topic><topic>Cisplatin - therapeutic use</topic><topic>cisplatin resistance</topic><topic>Clustering</topic><topic>Databases, Protein</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>epithelial‐to‐mesenchymal transition</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical prognosis</topic><topic>Mesenchyme</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Non-small cell lung carcinoma</topic><topic>NSCLC</topic><topic>Patients</topic><topic>Platinum</topic><topic>Prognosis</topic><topic>Protein Folding</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><topic>Tumor Burden - drug effects</topic><topic>Vimentin</topic><topic>Vimentin - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milone, Maria Rita</creatorcontrib><creatorcontrib>Lombardi, Rita</creatorcontrib><creatorcontrib>Roca, Maria Serena</creatorcontrib><creatorcontrib>Bruzzese, Francesca</creatorcontrib><creatorcontrib>Addi, Laura</creatorcontrib><creatorcontrib>Pucci, Biagio</creatorcontrib><creatorcontrib>Budillon, Alfredo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milone, Maria Rita</au><au>Lombardi, Rita</au><au>Roca, Maria Serena</au><au>Bruzzese, Francesca</au><au>Addi, Laura</au><au>Pucci, Biagio</au><au>Budillon, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>234</volume><issue>6</issue><spage>9077</spage><epage>9092</epage><pages>9077-9092</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.
By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30362533</pmid><doi>10.1002/jcp.27585</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6330-6053</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2019-06, Vol.234 (6), p.9077-9092 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_journals_2183984463 |
source | Wiley |
subjects | A549 Cells Animals Antineoplastic Agents - pharmacology Biomarkers Cancer Carcinogenesis Carcinogens Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Chemotherapy Cisplatin Cisplatin - therapeutic use cisplatin resistance Clustering Databases, Protein Drug Resistance, Neoplasm Endoplasmic reticulum Endoplasmic Reticulum Stress Epithelial-Mesenchymal Transition epithelial‐to‐mesenchymal transition Female Humans Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - metabolism Lung Neoplasms - pathology Medical prognosis Mesenchyme Mice, Nude Neoplastic Stem Cells - metabolism Non-small cell lung carcinoma NSCLC Patients Platinum Prognosis Protein Folding Protein Interaction Maps Proteins Proteomics Signal Transduction Stem cells Therapeutic applications Tumor Burden - drug effects Vimentin Vimentin - metabolism Xenograft Model Antitumor Assays |
title | Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20pathways%20involved%20in%20cisplatin%20resistance%20identified%20by%20a%20proteomics%20approach%20in%20non%E2%80%90small%E2%80%90cell%20lung%20cancer%20cells&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Milone,%20Maria%20Rita&rft.date=2019-06&rft.volume=234&rft.issue=6&rft.spage=9077&rft.epage=9092&rft.pages=9077-9092&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27585&rft_dat=%3Cproquest_cross%3E2183984463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183984463&rft_id=info:pmid/30362533&rfr_iscdi=true |