Loading…

Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells

Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by prot...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2019-06, Vol.234 (6), p.9077-9092
Main Authors: Milone, Maria Rita, Lombardi, Rita, Roca, Maria Serena, Bruzzese, Francesca, Addi, Laura, Pucci, Biagio, Budillon, Alfredo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463
cites cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463
container_end_page 9092
container_issue 6
container_start_page 9077
container_title Journal of cellular physiology
container_volume 234
creator Milone, Maria Rita
Lombardi, Rita
Roca, Maria Serena
Bruzzese, Francesca
Addi, Laura
Pucci, Biagio
Budillon, Alfredo
description Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance. By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.
doi_str_mv 10.1002/jcp.27585
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2183984463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2183984463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</originalsourceid><addsrcrecordid>eNp1kE1PwyAYx4nRuDk9-AUMiScP3aCUtRzN4msWNdF7Qyk4FvoitFsaL34EP6OfRGqnN0_PA_z4PfAH4BSjKUYonK1FPQ1jmtA9MMaIxUE0p-E-GPszHDAa4RE4cm6NEGKMkEMwIojMQ0rIGLw_VBtpYM2b1ZZ3DupyU5mNzH0DhXa14Y3vrHTaNbwUEupclo1W2iNZBzmsbdXIqtDCQV77BRer_m5ZlV8fn67gxvgqpDHQtOUrFL3Ewn7DHYMDxY2TJ7s6Ac_XVy-L22D5eHO3uFwGglBCAyEjSqSMFKIJiWMVKsIITqQQNEQiYUgJKvwvY0ZRlikcxwTlLI8zxbNoTibgfLD6x7210jXpumpt6QemIU4ISyIPeepioIStnLNSpbXVBbddilHah5z6kNOfkD17tjO2WSHzP_I3VQ_MBmCrjez-N6X3i6dB-Q0o0onq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2183984463</pqid></control><display><type>article</type><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><source>Wiley</source><creator>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</creator><creatorcontrib>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</creatorcontrib><description>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance. By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.27585</identifier><identifier>PMID: 30362533</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>A549 Cells ; Animals ; Antineoplastic Agents - pharmacology ; Biomarkers ; Cancer ; Carcinogenesis ; Carcinogens ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Chemotherapy ; Cisplatin ; Cisplatin - therapeutic use ; cisplatin resistance ; Clustering ; Databases, Protein ; Drug Resistance, Neoplasm ; Endoplasmic reticulum ; Endoplasmic Reticulum Stress ; Epithelial-Mesenchymal Transition ; epithelial‐to‐mesenchymal transition ; Female ; Humans ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Medical prognosis ; Mesenchyme ; Mice, Nude ; Neoplastic Stem Cells - metabolism ; Non-small cell lung carcinoma ; NSCLC ; Patients ; Platinum ; Prognosis ; Protein Folding ; Protein Interaction Maps ; Proteins ; Proteomics ; Signal Transduction ; Stem cells ; Therapeutic applications ; Tumor Burden - drug effects ; Vimentin ; Vimentin - metabolism ; Xenograft Model Antitumor Assays</subject><ispartof>Journal of cellular physiology, 2019-06, Vol.234 (6), p.9077-9092</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</citedby><cites>FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</cites><orcidid>0000-0002-6330-6053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30362533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Milone, Maria Rita</creatorcontrib><creatorcontrib>Lombardi, Rita</creatorcontrib><creatorcontrib>Roca, Maria Serena</creatorcontrib><creatorcontrib>Bruzzese, Francesca</creatorcontrib><creatorcontrib>Addi, Laura</creatorcontrib><creatorcontrib>Pucci, Biagio</creatorcontrib><creatorcontrib>Budillon, Alfredo</creatorcontrib><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance. By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Carcinogens</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Chemotherapy</subject><subject>Cisplatin</subject><subject>Cisplatin - therapeutic use</subject><subject>cisplatin resistance</subject><subject>Clustering</subject><subject>Databases, Protein</subject><subject>Drug Resistance, Neoplasm</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>epithelial‐to‐mesenchymal transition</subject><subject>Female</subject><subject>Humans</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical prognosis</subject><subject>Mesenchyme</subject><subject>Mice, Nude</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Non-small cell lung carcinoma</subject><subject>NSCLC</subject><subject>Patients</subject><subject>Platinum</subject><subject>Prognosis</subject><subject>Protein Folding</subject><subject>Protein Interaction Maps</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Therapeutic applications</subject><subject>Tumor Burden - drug effects</subject><subject>Vimentin</subject><subject>Vimentin - metabolism</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwyAYx4nRuDk9-AUMiScP3aCUtRzN4msWNdF7Qyk4FvoitFsaL34EP6OfRGqnN0_PA_z4PfAH4BSjKUYonK1FPQ1jmtA9MMaIxUE0p-E-GPszHDAa4RE4cm6NEGKMkEMwIojMQ0rIGLw_VBtpYM2b1ZZ3DupyU5mNzH0DhXa14Y3vrHTaNbwUEupclo1W2iNZBzmsbdXIqtDCQV77BRer_m5ZlV8fn67gxvgqpDHQtOUrFL3Ewn7DHYMDxY2TJ7s6Ac_XVy-L22D5eHO3uFwGglBCAyEjSqSMFKIJiWMVKsIITqQQNEQiYUgJKvwvY0ZRlikcxwTlLI8zxbNoTibgfLD6x7210jXpumpt6QemIU4ISyIPeepioIStnLNSpbXVBbddilHah5z6kNOfkD17tjO2WSHzP_I3VQ_MBmCrjez-N6X3i6dB-Q0o0onq</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Milone, Maria Rita</creator><creator>Lombardi, Rita</creator><creator>Roca, Maria Serena</creator><creator>Bruzzese, Francesca</creator><creator>Addi, Laura</creator><creator>Pucci, Biagio</creator><creator>Budillon, Alfredo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-6330-6053</orcidid></search><sort><creationdate>201906</creationdate><title>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</title><author>Milone, Maria Rita ; Lombardi, Rita ; Roca, Maria Serena ; Bruzzese, Francesca ; Addi, Laura ; Pucci, Biagio ; Budillon, Alfredo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Carcinogens</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Chemotherapy</topic><topic>Cisplatin</topic><topic>Cisplatin - therapeutic use</topic><topic>cisplatin resistance</topic><topic>Clustering</topic><topic>Databases, Protein</topic><topic>Drug Resistance, Neoplasm</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>epithelial‐to‐mesenchymal transition</topic><topic>Female</topic><topic>Humans</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical prognosis</topic><topic>Mesenchyme</topic><topic>Mice, Nude</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Non-small cell lung carcinoma</topic><topic>NSCLC</topic><topic>Patients</topic><topic>Platinum</topic><topic>Prognosis</topic><topic>Protein Folding</topic><topic>Protein Interaction Maps</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Therapeutic applications</topic><topic>Tumor Burden - drug effects</topic><topic>Vimentin</topic><topic>Vimentin - metabolism</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milone, Maria Rita</creatorcontrib><creatorcontrib>Lombardi, Rita</creatorcontrib><creatorcontrib>Roca, Maria Serena</creatorcontrib><creatorcontrib>Bruzzese, Francesca</creatorcontrib><creatorcontrib>Addi, Laura</creatorcontrib><creatorcontrib>Pucci, Biagio</creatorcontrib><creatorcontrib>Budillon, Alfredo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milone, Maria Rita</au><au>Lombardi, Rita</au><au>Roca, Maria Serena</au><au>Bruzzese, Francesca</au><au>Addi, Laura</au><au>Pucci, Biagio</au><au>Budillon, Alfredo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>234</volume><issue>6</issue><spage>9077</spage><epage>9092</epage><pages>9077-9092</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Although platinum‐based chemotherapy remains the standard‐of‐care for most patients with advanced non‐small‐cell lung cancer (NSCLC), acquired resistance occurs frequently predicting poor prognosis. To examine the mechanisms underlying platinum resistance, we have generated and characterized by proteomic approach the resistant A549 CDDP‐resistant (CPr‐A549) and their parental A549 cells, identifying 15 proteins differentially expressed (13 upregulated and 2 downregulated in CPr‐A549). In details, we highlighted a coherent network of proteins clustering together and involved in altered protein folding and endoplasmic reticulum stress, correlated with epithelial to mesenchymal transition process and cancer stem cell markers, where vimentin played a hierarchical role, ultimately resulting in increased aggressive features. By using publicly available databases we showed that the modulated proteins could contribute to NSCLC carcinogenesis and correlate with NSCLC patients prognosis and survival probability, suggesting that they can be used as novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance. By a proteomic approach, a coherent network of proteins associated with cisplatin resistance and ultimately resulting in increased aggressive features were defined. These proteins are involved in altered protein folding and ER stress, correlated with EMT process and CSC markers, where vimentin played a hierarchical role. Publicly available databases interrogation suggest that this protein represent novel potential prognostic/predictive biomarkers or therapeutic targets to overcome platinum‐resistance.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30362533</pmid><doi>10.1002/jcp.27585</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6330-6053</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2019-06, Vol.234 (6), p.9077-9092
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_journals_2183984463
source Wiley
subjects A549 Cells
Animals
Antineoplastic Agents - pharmacology
Biomarkers
Cancer
Carcinogenesis
Carcinogens
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Chemotherapy
Cisplatin
Cisplatin - therapeutic use
cisplatin resistance
Clustering
Databases, Protein
Drug Resistance, Neoplasm
Endoplasmic reticulum
Endoplasmic Reticulum Stress
Epithelial-Mesenchymal Transition
epithelial‐to‐mesenchymal transition
Female
Humans
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Medical prognosis
Mesenchyme
Mice, Nude
Neoplastic Stem Cells - metabolism
Non-small cell lung carcinoma
NSCLC
Patients
Platinum
Prognosis
Protein Folding
Protein Interaction Maps
Proteins
Proteomics
Signal Transduction
Stem cells
Therapeutic applications
Tumor Burden - drug effects
Vimentin
Vimentin - metabolism
Xenograft Model Antitumor Assays
title Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T22%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20pathways%20involved%20in%20cisplatin%20resistance%20identified%20by%20a%20proteomics%20approach%20in%20non%E2%80%90small%E2%80%90cell%20lung%20cancer%20cells&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Milone,%20Maria%20Rita&rft.date=2019-06&rft.volume=234&rft.issue=6&rft.spage=9077&rft.epage=9092&rft.pages=9077-9092&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.27585&rft_dat=%3Cproquest_cross%3E2183984463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3535-ce453ee4f058377f2f39318ecc520c890fc5c9547950bbf17730d9d7bfab463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2183984463&rft_id=info:pmid/30362533&rfr_iscdi=true