Loading…

Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems

We consider a steady-state heat conduction problem in a multidimensional bounded domain Omega for the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion Gamma_1 of the boundary and a constant heat flux q in the remaining po...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-04
Main Authors: Bollati, Julieta, Gariboldi, Claudia M, Tarzia, Domingo A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bollati, Julieta
Gariboldi, Claudia M
Tarzia, Domingo A
description We consider a steady-state heat conduction problem in a multidimensional bounded domain Omega for the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion Gamma_1 of the boundary and a constant heat flux q in the remaining portion Gamma_2 of the boundary. Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary Gamma_1 with heat transfer coefficient alpha and external temperature b. We obtain explicitly, for a rectangular domain in R^2, an annulus in R^2 and a spherical shell in R^3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on Gamma_1 converge, when alpha\to\infty, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on Gamma_1. Also, we analyze the order of convergence in each case, which turns out to be 1/alpha being new for these kind of elliptic optimal control problems.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186004990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186004990</sourcerecordid><originalsourceid>FETCH-proquest_journals_21860049903</originalsourceid><addsrcrecordid>eNqNyk8LgjAcxvERBEn5HgZdE9amptfM6FZQd5k6YzL3s_2Bevd5iOjY5fkePs8MBZSxbZTFlC5QaG1PCKHpjiYJC9C9fI5KNtLhKyjvJGiLOzD4IK0zsvZOtBu8B69bbl6Y6_ZXoi-USsnRyQafpx24wgVoZ0Dhi4FaicGu0Lzjyorw0yVaH8tbcYpGAw8vrKt68EZPVNFtlhIS5zlh_73eZzFIHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186004990</pqid></control><display><type>article</type><title>Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems</title><source>Publicly Available Content Database</source><creator>Bollati, Julieta ; Gariboldi, Claudia M ; Tarzia, Domingo A</creator><creatorcontrib>Bollati, Julieta ; Gariboldi, Claudia M ; Tarzia, Domingo A</creatorcontrib><description>We consider a steady-state heat conduction problem in a multidimensional bounded domain Omega for the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion Gamma_1 of the boundary and a constant heat flux q in the remaining portion Gamma_2 of the boundary. Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary Gamma_1 with heat transfer coefficient alpha and external temperature b. We obtain explicitly, for a rectangular domain in R^2, an annulus in R^2 and a spherical shell in R^3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on Gamma_1 converge, when alpha\to\infty, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on Gamma_1. Also, we analyze the order of convergence in each case, which turns out to be 1/alpha being new for these kind of elliptic optimal control problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Conduction heating ; Conductive heat transfer ; Convergence ; Heat ; Heat flux ; Heat transfer coefficients ; Internal energy ; Numerical methods ; Optimal control ; Poisson equation ; Spherical shells ; Steady state ; Test procedures</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2186004990?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Bollati, Julieta</creatorcontrib><creatorcontrib>Gariboldi, Claudia M</creatorcontrib><creatorcontrib>Tarzia, Domingo A</creatorcontrib><title>Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems</title><title>arXiv.org</title><description>We consider a steady-state heat conduction problem in a multidimensional bounded domain Omega for the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion Gamma_1 of the boundary and a constant heat flux q in the remaining portion Gamma_2 of the boundary. Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary Gamma_1 with heat transfer coefficient alpha and external temperature b. We obtain explicitly, for a rectangular domain in R^2, an annulus in R^2 and a spherical shell in R^3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on Gamma_1 converge, when alpha\to\infty, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on Gamma_1. Also, we analyze the order of convergence in each case, which turns out to be 1/alpha being new for these kind of elliptic optimal control problems.</description><subject>Boundary conditions</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Convergence</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer coefficients</subject><subject>Internal energy</subject><subject>Numerical methods</subject><subject>Optimal control</subject><subject>Poisson equation</subject><subject>Spherical shells</subject><subject>Steady state</subject><subject>Test procedures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk8LgjAcxvERBEn5HgZdE9amptfM6FZQd5k6YzL3s_2Bevd5iOjY5fkePs8MBZSxbZTFlC5QaG1PCKHpjiYJC9C9fI5KNtLhKyjvJGiLOzD4IK0zsvZOtBu8B69bbl6Y6_ZXoi-USsnRyQafpx24wgVoZ0Dhi4FaicGu0Lzjyorw0yVaH8tbcYpGAw8vrKt68EZPVNFtlhIS5zlh_73eZzFIHg</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>Bollati, Julieta</creator><creator>Gariboldi, Claudia M</creator><creator>Tarzia, Domingo A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200403</creationdate><title>Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems</title><author>Bollati, Julieta ; Gariboldi, Claudia M ; Tarzia, Domingo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21860049903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary conditions</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Convergence</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer coefficients</topic><topic>Internal energy</topic><topic>Numerical methods</topic><topic>Optimal control</topic><topic>Poisson equation</topic><topic>Spherical shells</topic><topic>Steady state</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>Bollati, Julieta</creatorcontrib><creatorcontrib>Gariboldi, Claudia M</creatorcontrib><creatorcontrib>Tarzia, Domingo A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bollati, Julieta</au><au>Gariboldi, Claudia M</au><au>Tarzia, Domingo A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems</atitle><jtitle>arXiv.org</jtitle><date>2020-04-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We consider a steady-state heat conduction problem in a multidimensional bounded domain Omega for the Poisson equation with constant internal energy g and mixed boundary conditions given by a constant temperature b in the portion Gamma_1 of the boundary and a constant heat flux q in the remaining portion Gamma_2 of the boundary. Moreover, we consider a family of steady-state heat conduction problems with a convective condition on the boundary Gamma_1 with heat transfer coefficient alpha and external temperature b. We obtain explicitly, for a rectangular domain in R^2, an annulus in R^2 and a spherical shell in R^3, the optimal controls, the system states and adjoint states for the following optimal control problems: a distributed control problem on the internal energy g, a boundary optimal control problem on the heat flux q, a boundary optimal control problem on the external temperature b and a distributed-boundary simultaneous optimal control problem on the source g and the flux q. These explicit solutions can be used for testing new numerical methods as a benchmark test. In agreement with theory, it is proved that the system state, adjoint state, optimal controls and optimal values corresponding to the problem with a convective condition on Gamma_1 converge, when alpha\to\infty, to the corresponding system state, adjoint state, optimal controls and optimal values that arise from the problem with a temperature condition on Gamma_1. Also, we analyze the order of convergence in each case, which turns out to be 1/alpha being new for these kind of elliptic optimal control problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2186004990
source Publicly Available Content Database
subjects Boundary conditions
Conduction heating
Conductive heat transfer
Convergence
Heat
Heat flux
Heat transfer coefficients
Internal energy
Numerical methods
Optimal control
Poisson equation
Spherical shells
Steady state
Test procedures
title Explicit Solutions for Distributed, Boundary and Distributed-Boundary Elliptic Optimal Control Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Explicit%20Solutions%20for%20Distributed,%20Boundary%20and%20Distributed-Boundary%20Elliptic%20Optimal%20Control%20Problems&rft.jtitle=arXiv.org&rft.au=Bollati,%20Julieta&rft.date=2020-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186004990%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21860049903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186004990&rft_id=info:pmid/&rfr_iscdi=true