Loading…

GRASP and VNS for solving the p-next center problem

•A discrete location problem is addressed motivated by very common situations in humanitarian logistics, the p-next center problem (pNCP).•Two metaheuristic methods are designed and compared to solve the pNCP: (a) A Greedy Randomized Adaptive Search Procedure and (b) a Variable Neighborhood Search a...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research 2019-04, Vol.104, p.295-303
Main Authors: López-Sánchez, A.D., Sánchez-Oro, J., Hernández-Díaz, A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3
cites cdi_FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3
container_end_page 303
container_issue
container_start_page 295
container_title Computers & operations research
container_volume 104
creator López-Sánchez, A.D.
Sánchez-Oro, J.
Hernández-Díaz, A.G.
description •A discrete location problem is addressed motivated by very common situations in humanitarian logistics, the p-next center problem (pNCP).•Two metaheuristic methods are designed and compared to solve the pNCP: (a) A Greedy Randomized Adaptive Search Procedure and (b) a Variable Neighborhood Search algorithm.•The two methodologies above, the proposed GRASP and VNS algorithms, are then hybridized in order to attain even better results.•A wide set of instances with different sizes is solved and the algorithms are able to obtain optimal or near-optimal solutions in short computing times. This paper presents two metaheuristic algorithms for the solution of the p-next center problem: a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Search algorithm, that will be subsequently hybridized. The p-next center problem is a variation of the p-center problem, which consists of locating p out of n centers and assigning them to users in order to minimize the maximum, over all users, of the distance of each user to its corresponding center plus the distance between this center to its closest alternative center. This problem emerges from the need to reach a secondary help center in the case of a natural disaster, when the closest center may become unavailable.
doi_str_mv 10.1016/j.cor.2018.12.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186122498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054818303290</els_id><sourcerecordid>2186122498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFvA864z2a8snopoFYqKVfEWkuxUd2k3NdkW_fem1LNzmcv7zDs8jJ0jpAhYXnapdT4VgDJFkQJWB2yEssqSqizeD9kIMigSKHJ5zE5C6CBOJXDEsunzZP7Edd_wt4c5XzjPg1tu2_6DD5_E10lP3wO31A_k-do7s6TVKTta6GWgs789Zq-3Ny_Xd8nscXp_PZklNiuqIUEQQtfGGF3KRhZagM1QQEm10GRqKLUGW-dlo_OMwEigQhhRmKZCJKubbMwu9ndj79eGwqA6t_F9rFQCZYlC5LWMKdynrHcheFqotW9X2v8oBLVzozoV3aidG4VCRTeRudozFN_ftuRVsC31lprWkx1U49p_6F8JvWpX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186122498</pqid></control><display><type>article</type><title>GRASP and VNS for solving the p-next center problem</title><source>ScienceDirect Freedom Collection</source><creator>López-Sánchez, A.D. ; Sánchez-Oro, J. ; Hernández-Díaz, A.G.</creator><creatorcontrib>López-Sánchez, A.D. ; Sánchez-Oro, J. ; Hernández-Díaz, A.G.</creatorcontrib><description>•A discrete location problem is addressed motivated by very common situations in humanitarian logistics, the p-next center problem (pNCP).•Two metaheuristic methods are designed and compared to solve the pNCP: (a) A Greedy Randomized Adaptive Search Procedure and (b) a Variable Neighborhood Search algorithm.•The two methodologies above, the proposed GRASP and VNS algorithms, are then hybridized in order to attain even better results.•A wide set of instances with different sizes is solved and the algorithms are able to obtain optimal or near-optimal solutions in short computing times. This paper presents two metaheuristic algorithms for the solution of the p-next center problem: a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Search algorithm, that will be subsequently hybridized. The p-next center problem is a variation of the p-center problem, which consists of locating p out of n centers and assigning them to users in order to minimize the maximum, over all users, of the distance of each user to its corresponding center plus the distance between this center to its closest alternative center. This problem emerges from the need to reach a secondary help center in the case of a natural disaster, when the closest center may become unavailable.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2018.12.017</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Adaptive search techniques ; Discrete location ; GRASP ; Heuristic methods ; Operations research ; p-center problem ; p-next center problem ; Search algorithms ; VNS</subject><ispartof>Computers &amp; operations research, 2019-04, Vol.104, p.295-303</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Apr 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3</citedby><cites>FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3</cites><orcidid>0000-0003-3022-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>López-Sánchez, A.D.</creatorcontrib><creatorcontrib>Sánchez-Oro, J.</creatorcontrib><creatorcontrib>Hernández-Díaz, A.G.</creatorcontrib><title>GRASP and VNS for solving the p-next center problem</title><title>Computers &amp; operations research</title><description>•A discrete location problem is addressed motivated by very common situations in humanitarian logistics, the p-next center problem (pNCP).•Two metaheuristic methods are designed and compared to solve the pNCP: (a) A Greedy Randomized Adaptive Search Procedure and (b) a Variable Neighborhood Search algorithm.•The two methodologies above, the proposed GRASP and VNS algorithms, are then hybridized in order to attain even better results.•A wide set of instances with different sizes is solved and the algorithms are able to obtain optimal or near-optimal solutions in short computing times. This paper presents two metaheuristic algorithms for the solution of the p-next center problem: a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Search algorithm, that will be subsequently hybridized. The p-next center problem is a variation of the p-center problem, which consists of locating p out of n centers and assigning them to users in order to minimize the maximum, over all users, of the distance of each user to its corresponding center plus the distance between this center to its closest alternative center. This problem emerges from the need to reach a secondary help center in the case of a natural disaster, when the closest center may become unavailable.</description><subject>Adaptive search techniques</subject><subject>Discrete location</subject><subject>GRASP</subject><subject>Heuristic methods</subject><subject>Operations research</subject><subject>p-center problem</subject><subject>p-next center problem</subject><subject>Search algorithms</subject><subject>VNS</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFvA864z2a8snopoFYqKVfEWkuxUd2k3NdkW_fem1LNzmcv7zDs8jJ0jpAhYXnapdT4VgDJFkQJWB2yEssqSqizeD9kIMigSKHJ5zE5C6CBOJXDEsunzZP7Edd_wt4c5XzjPg1tu2_6DD5_E10lP3wO31A_k-do7s6TVKTta6GWgs789Zq-3Ny_Xd8nscXp_PZklNiuqIUEQQtfGGF3KRhZagM1QQEm10GRqKLUGW-dlo_OMwEigQhhRmKZCJKubbMwu9ndj79eGwqA6t_F9rFQCZYlC5LWMKdynrHcheFqotW9X2v8oBLVzozoV3aidG4VCRTeRudozFN_ftuRVsC31lprWkx1U49p_6F8JvWpX</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>López-Sánchez, A.D.</creator><creator>Sánchez-Oro, J.</creator><creator>Hernández-Díaz, A.G.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3022-3865</orcidid></search><sort><creationdate>20190401</creationdate><title>GRASP and VNS for solving the p-next center problem</title><author>López-Sánchez, A.D. ; Sánchez-Oro, J. ; Hernández-Díaz, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive search techniques</topic><topic>Discrete location</topic><topic>GRASP</topic><topic>Heuristic methods</topic><topic>Operations research</topic><topic>p-center problem</topic><topic>p-next center problem</topic><topic>Search algorithms</topic><topic>VNS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Sánchez, A.D.</creatorcontrib><creatorcontrib>Sánchez-Oro, J.</creatorcontrib><creatorcontrib>Hernández-Díaz, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Sánchez, A.D.</au><au>Sánchez-Oro, J.</au><au>Hernández-Díaz, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRASP and VNS for solving the p-next center problem</atitle><jtitle>Computers &amp; operations research</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>104</volume><spage>295</spage><epage>303</epage><pages>295-303</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•A discrete location problem is addressed motivated by very common situations in humanitarian logistics, the p-next center problem (pNCP).•Two metaheuristic methods are designed and compared to solve the pNCP: (a) A Greedy Randomized Adaptive Search Procedure and (b) a Variable Neighborhood Search algorithm.•The two methodologies above, the proposed GRASP and VNS algorithms, are then hybridized in order to attain even better results.•A wide set of instances with different sizes is solved and the algorithms are able to obtain optimal or near-optimal solutions in short computing times. This paper presents two metaheuristic algorithms for the solution of the p-next center problem: a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Search algorithm, that will be subsequently hybridized. The p-next center problem is a variation of the p-center problem, which consists of locating p out of n centers and assigning them to users in order to minimize the maximum, over all users, of the distance of each user to its corresponding center plus the distance between this center to its closest alternative center. This problem emerges from the need to reach a secondary help center in the case of a natural disaster, when the closest center may become unavailable.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2018.12.017</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3022-3865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2019-04, Vol.104, p.295-303
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_2186122498
source ScienceDirect Freedom Collection
subjects Adaptive search techniques
Discrete location
GRASP
Heuristic methods
Operations research
p-center problem
p-next center problem
Search algorithms
VNS
title GRASP and VNS for solving the p-next center problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRASP%20and%20VNS%20for%20solving%20the%20p-next%20center%20problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=L%C3%B3pez-S%C3%A1nchez,%20A.D.&rft.date=2019-04-01&rft.volume=104&rft.spage=295&rft.epage=303&rft.pages=295-303&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2018.12.017&rft_dat=%3Cproquest_cross%3E2186122498%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-1022a9bbba68d85a20c31206e92aeb906aa0c946da43e0b80e52b25bd711ecad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186122498&rft_id=info:pmid/&rfr_iscdi=true