Loading…

Synthesis of DBSA-doped Polyaniline by Emulsion Polymerization and PANI/PLA Electrospun Fiber Membrane Conductivity

Polyaniline (PANI) has gained interest due to its reasonably good conductivity, stability, easy preparation, affordability, and redox properties. Aniline monomers, emulsifiers, and dopant DBSA are used for emulsion polymerization in water, using various oxidants. The DBSA-doped polyaniline was extra...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Textile Institute 2019-02, Vol.110 (2), p.274-281
Main Authors: Yan, Taohai, Zhang, Mohan, Jiang, Jinhua, Chen, Nanliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polyaniline (PANI) has gained interest due to its reasonably good conductivity, stability, easy preparation, affordability, and redox properties. Aniline monomers, emulsifiers, and dopant DBSA are used for emulsion polymerization in water, using various oxidants. The DBSA-doped polyaniline was extracted via a chloroform solution, and PLA was added directly in the emulsion to form the DBSA-PANI/PLA composite electrospinning solution. The DBSA-PANI/PLA composite nanofiber membrane was prepared via electrospinning. FeCl 3 , K 2 Cr 2 O 7 , and ammonium persulfate were used as oxidants in the emulsion polymerization process. The Infrared spectra showed the full characteristic peaks of polyaniline when ammonium persulfate was used as an oxidant. The transmission rate of the characteristic peak became smaller when the ratio of ammonium persulfate/aniline monomer increased from 0.5 to 1, demonstrating the polyaniline content increased. The electrospun nanofibers that were prepared were spindle-shaped fibers and the fiber diameter distribution was wide. The PANI/PLA electrospun fiber membrane conductivity was several orders of magnitude higher than the pure PLA membrane. The PANI/PLA electrospun fiber membrane had the highest conductivity (9.1 Ă— 10 -3 S/cm) when (APS/An) = 1.0. This prepared PANI/PLA nanometer fiber membrane could be used for electromagnetic shielding and could be an effective biomaterial within the engineering of electrically responsive biological tissues and organs.
ISSN:0040-5000
1754-2340
DOI:10.1080/00405000.2018.1477318