Loading…

Aerodynamic grain‐size distribution of blown sand

Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size d...

Full description

Saved in:
Bibliographic Details
Published in:Sedimentology 2019-02, Vol.66 (2), p.590-603
Main Authors: Yang, YanYan, Liu, LianYou, Li, XiaoYan, Shi, PeiJun, Zhang, GuoMing, Xiong, YiYing, Lyu, YanLi, Guo, LanLan, Liang, Bo, Zhao, MengDi, Dai, JiaDong, Zuo, XiYang, Han, XuJiao, Eyles, Nick
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63
cites cdi_FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63
container_end_page 603
container_issue 2
container_start_page 590
container_title Sedimentology
container_volume 66
creator Yang, YanYan
Liu, LianYou
Li, XiaoYan
Shi, PeiJun
Zhang, GuoMing
Xiong, YiYing
Lyu, YanLi
Guo, LanLan
Liang, Bo
Zhao, MengDi
Dai, JiaDong
Zuo, XiYang
Han, XuJiao
Eyles, Nick
description Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.
doi_str_mv 10.1111/sed.12497
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186239275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186239275</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqEw8AaRmBjS-i92PFal_EiVGIDZcuMb5Cq1i52oKhOPwDPyJATCyl3O8p1zpQ-hS4KnZLhZAjsllCt5hDLCRFkwrMgxyjBmssCSi1N0ltIGYyJ4pTLE5hCDPXizdXX-Go3zXx-fyb1Dbl3qolv3nQs-D02-bsPe58l4e45OGtMmuPjLCXq5XT4v7ovV493DYr4qDKNYFrTilhrFDFjLmgpwTVVDDLVKAuMlroytOKakqRVwyQTIWjHBuTRcSLCCTdDVuLuL4a2H1OlN6KMfXmpKKkGZorIcqOuRqmNIKUKjd9FtTTxogvWPEz040b9OBnY2snvXwuF_UD8tb8bGN4mmYqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186239275</pqid></control><display><type>article</type><title>Aerodynamic grain‐size distribution of blown sand</title><source>Wiley</source><creator>Yang, YanYan ; Liu, LianYou ; Li, XiaoYan ; Shi, PeiJun ; Zhang, GuoMing ; Xiong, YiYing ; Lyu, YanLi ; Guo, LanLan ; Liang, Bo ; Zhao, MengDi ; Dai, JiaDong ; Zuo, XiYang ; Han, XuJiao ; Eyles, Nick</creator><contributor>Eyles, Nick</contributor><creatorcontrib>Yang, YanYan ; Liu, LianYou ; Li, XiaoYan ; Shi, PeiJun ; Zhang, GuoMing ; Xiong, YiYing ; Lyu, YanLi ; Guo, LanLan ; Liang, Bo ; Zhao, MengDi ; Dai, JiaDong ; Zuo, XiYang ; Han, XuJiao ; Eyles, Nick ; Eyles, Nick</creatorcontrib><description>Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12497</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Aeolian saltation ; Blowdown wind tunnels ; Boundary layers ; Entrainment ; Eolian sands ; Fluctuations ; Flux ; Grain size ; grain‐size fractions ; Height ; Particle size ; Particle size distribution ; Saltation ; Sand ; Sand beds ; Sand transport ; sand transport flux ; Sediment transport ; Selectivity ; selectivity by wind ; Size distribution ; Transport ; Transport processes ; Velocity ; vertical distribution ; Weight ; Wind speed ; Wind tunnels</subject><ispartof>Sedimentology, 2019-02, Vol.66 (2), p.590-603</ispartof><rights>2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists</rights><rights>Copyright © 2019 International Association of Sedimentologists</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63</citedby><cites>FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Eyles, Nick</contributor><creatorcontrib>Yang, YanYan</creatorcontrib><creatorcontrib>Liu, LianYou</creatorcontrib><creatorcontrib>Li, XiaoYan</creatorcontrib><creatorcontrib>Shi, PeiJun</creatorcontrib><creatorcontrib>Zhang, GuoMing</creatorcontrib><creatorcontrib>Xiong, YiYing</creatorcontrib><creatorcontrib>Lyu, YanLi</creatorcontrib><creatorcontrib>Guo, LanLan</creatorcontrib><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Zhao, MengDi</creatorcontrib><creatorcontrib>Dai, JiaDong</creatorcontrib><creatorcontrib>Zuo, XiYang</creatorcontrib><creatorcontrib>Han, XuJiao</creatorcontrib><creatorcontrib>Eyles, Nick</creatorcontrib><title>Aerodynamic grain‐size distribution of blown sand</title><title>Sedimentology</title><description>Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.</description><subject>Aeolian saltation</subject><subject>Blowdown wind tunnels</subject><subject>Boundary layers</subject><subject>Entrainment</subject><subject>Eolian sands</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Grain size</subject><subject>grain‐size fractions</subject><subject>Height</subject><subject>Particle size</subject><subject>Particle size distribution</subject><subject>Saltation</subject><subject>Sand</subject><subject>Sand beds</subject><subject>Sand transport</subject><subject>sand transport flux</subject><subject>Sediment transport</subject><subject>Selectivity</subject><subject>selectivity by wind</subject><subject>Size distribution</subject><subject>Transport</subject><subject>Transport processes</subject><subject>Velocity</subject><subject>vertical distribution</subject><subject>Weight</subject><subject>Wind speed</subject><subject>Wind tunnels</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqEw8AaRmBjS-i92PFal_EiVGIDZcuMb5Cq1i52oKhOPwDPyJATCyl3O8p1zpQ-hS4KnZLhZAjsllCt5hDLCRFkwrMgxyjBmssCSi1N0ltIGYyJ4pTLE5hCDPXizdXX-Go3zXx-fyb1Dbl3qolv3nQs-D02-bsPe58l4e45OGtMmuPjLCXq5XT4v7ovV493DYr4qDKNYFrTilhrFDFjLmgpwTVVDDLVKAuMlroytOKakqRVwyQTIWjHBuTRcSLCCTdDVuLuL4a2H1OlN6KMfXmpKKkGZorIcqOuRqmNIKUKjd9FtTTxogvWPEz040b9OBnY2snvXwuF_UD8tb8bGN4mmYqU</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Yang, YanYan</creator><creator>Liu, LianYou</creator><creator>Li, XiaoYan</creator><creator>Shi, PeiJun</creator><creator>Zhang, GuoMing</creator><creator>Xiong, YiYing</creator><creator>Lyu, YanLi</creator><creator>Guo, LanLan</creator><creator>Liang, Bo</creator><creator>Zhao, MengDi</creator><creator>Dai, JiaDong</creator><creator>Zuo, XiYang</creator><creator>Han, XuJiao</creator><creator>Eyles, Nick</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201902</creationdate><title>Aerodynamic grain‐size distribution of blown sand</title><author>Yang, YanYan ; Liu, LianYou ; Li, XiaoYan ; Shi, PeiJun ; Zhang, GuoMing ; Xiong, YiYing ; Lyu, YanLi ; Guo, LanLan ; Liang, Bo ; Zhao, MengDi ; Dai, JiaDong ; Zuo, XiYang ; Han, XuJiao ; Eyles, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aeolian saltation</topic><topic>Blowdown wind tunnels</topic><topic>Boundary layers</topic><topic>Entrainment</topic><topic>Eolian sands</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Grain size</topic><topic>grain‐size fractions</topic><topic>Height</topic><topic>Particle size</topic><topic>Particle size distribution</topic><topic>Saltation</topic><topic>Sand</topic><topic>Sand beds</topic><topic>Sand transport</topic><topic>sand transport flux</topic><topic>Sediment transport</topic><topic>Selectivity</topic><topic>selectivity by wind</topic><topic>Size distribution</topic><topic>Transport</topic><topic>Transport processes</topic><topic>Velocity</topic><topic>vertical distribution</topic><topic>Weight</topic><topic>Wind speed</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, YanYan</creatorcontrib><creatorcontrib>Liu, LianYou</creatorcontrib><creatorcontrib>Li, XiaoYan</creatorcontrib><creatorcontrib>Shi, PeiJun</creatorcontrib><creatorcontrib>Zhang, GuoMing</creatorcontrib><creatorcontrib>Xiong, YiYing</creatorcontrib><creatorcontrib>Lyu, YanLi</creatorcontrib><creatorcontrib>Guo, LanLan</creatorcontrib><creatorcontrib>Liang, Bo</creatorcontrib><creatorcontrib>Zhao, MengDi</creatorcontrib><creatorcontrib>Dai, JiaDong</creatorcontrib><creatorcontrib>Zuo, XiYang</creatorcontrib><creatorcontrib>Han, XuJiao</creatorcontrib><creatorcontrib>Eyles, Nick</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, YanYan</au><au>Liu, LianYou</au><au>Li, XiaoYan</au><au>Shi, PeiJun</au><au>Zhang, GuoMing</au><au>Xiong, YiYing</au><au>Lyu, YanLi</au><au>Guo, LanLan</au><au>Liang, Bo</au><au>Zhao, MengDi</au><au>Dai, JiaDong</au><au>Zuo, XiYang</au><au>Han, XuJiao</au><au>Eyles, Nick</au><au>Eyles, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic grain‐size distribution of blown sand</atitle><jtitle>Sedimentology</jtitle><date>2019-02</date><risdate>2019</risdate><volume>66</volume><issue>2</issue><spage>590</spage><epage>603</epage><pages>590-603</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12497</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-0746
ispartof Sedimentology, 2019-02, Vol.66 (2), p.590-603
issn 0037-0746
1365-3091
language eng
recordid cdi_proquest_journals_2186239275
source Wiley
subjects Aeolian saltation
Blowdown wind tunnels
Boundary layers
Entrainment
Eolian sands
Fluctuations
Flux
Grain size
grain‐size fractions
Height
Particle size
Particle size distribution
Saltation
Sand
Sand beds
Sand transport
sand transport flux
Sediment transport
Selectivity
selectivity by wind
Size distribution
Transport
Transport processes
Velocity
vertical distribution
Weight
Wind speed
Wind tunnels
title Aerodynamic grain‐size distribution of blown sand
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20grain%E2%80%90size%20distribution%20of%20blown%20sand&rft.jtitle=Sedimentology&rft.au=Yang,%20YanYan&rft.date=2019-02&rft.volume=66&rft.issue=2&rft.spage=590&rft.epage=603&rft.pages=590-603&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12497&rft_dat=%3Cproquest_cross%3E2186239275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3207-284d2a93aedd3f8e0c29f1a2d97e34508ad84021fc9e4736e7c936447a467ed63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186239275&rft_id=info:pmid/&rfr_iscdi=true