Loading…
In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices
Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological re...
Saved in:
Published in: | Journal of materials research 2019-02, Vol.34 (4), p.519-531 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3 |
container_end_page | 531 |
container_issue | 4 |
container_start_page | 519 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Uscátegui, Yomaira L. Díaz, Luis E. Valero, Manuel F. |
description | Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices. |
doi_str_mv | 10.1557/jmr.2018.448 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186511899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_448</cupid><sourcerecordid>2186511899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUQIMoOKdv_oCAr7YmbdKmjzL8GAx80eeSzy2jbbokm8xfb-YGPolPlwvnngsHgFuMckxp_bDufV4gzHJC2BmYFIiQjJZFdQ4miDGSFQ0ml-AqhDVCmKKaTMBmPsCdjd5BPihoD8vOQWGddP3IoxW2s3EPnYGj6_Zbr-OKDzrAsB_iSgf7pRX8tHEFJQ_Reehs90O6LkCT9mTqtbKSd1DpnZU6XIMLw7ugb05zCj6en95nr9ni7WU-e1xksiQoZrIojBTKoIKaEouaN1yZmpW0UoJQQzQWSgqKWIWZ4UKWkigpy1oILZFkppyCu6N39G6z1SG2a7f1Q3rZFphVFGPWNIm6P1LSuxC8Nu3obc_9vsWoPURtU9T2ELVNUROeHfGQsGGp_a_0Dz4_6XkvvFVL_c_BN2d8jM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186511899</pqid></control><display><type>article</type><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</creator><creatorcontrib>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</creatorcontrib><description>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.448</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Antimicrobial agents ; Applied and Technical Physics ; Biocompatibility ; Biomaterials ; Biomedical materials ; Castor oil ; Contact angle ; Contact stresses ; Differential scanning calorimetry ; Diisocyanates ; E coli ; Elasticity ; Fatty acids ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Medical equipment ; Nanotechnology ; Organs ; Polymers ; Polyols ; Polyurethane resins ; Protective coatings ; Pseudomonas aeruginosa ; Raw materials ; Skin ; Strain analysis ; Surgical implants ; Synthesis ; Thermogravimetric analysis ; Tissue engineering ; Transplants & implants ; Triglycerides ; Vegetable oils ; Wound healing</subject><ispartof>Journal of materials research, 2019-02, Vol.34 (4), p.519-531</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</citedby><cites>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2186511899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2186511899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Uscátegui, Yomaira L.</creatorcontrib><creatorcontrib>Díaz, Luis E.</creatorcontrib><creatorcontrib>Valero, Manuel F.</creatorcontrib><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</description><subject>Antimicrobial agents</subject><subject>Applied and Technical Physics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Castor oil</subject><subject>Contact angle</subject><subject>Contact stresses</subject><subject>Differential scanning calorimetry</subject><subject>Diisocyanates</subject><subject>E coli</subject><subject>Elasticity</subject><subject>Fatty acids</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Nanotechnology</subject><subject>Organs</subject><subject>Polymers</subject><subject>Polyols</subject><subject>Polyurethane resins</subject><subject>Protective coatings</subject><subject>Pseudomonas aeruginosa</subject><subject>Raw materials</subject><subject>Skin</subject><subject>Strain analysis</subject><subject>Surgical implants</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Transplants & implants</subject><subject>Triglycerides</subject><subject>Vegetable oils</subject><subject>Wound healing</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkF1LwzAUQIMoOKdv_oCAr7YmbdKmjzL8GAx80eeSzy2jbbokm8xfb-YGPolPlwvnngsHgFuMckxp_bDufV4gzHJC2BmYFIiQjJZFdQ4miDGSFQ0ml-AqhDVCmKKaTMBmPsCdjd5BPihoD8vOQWGddP3IoxW2s3EPnYGj6_Zbr-OKDzrAsB_iSgf7pRX8tHEFJQ_Reehs90O6LkCT9mTqtbKSd1DpnZU6XIMLw7ugb05zCj6en95nr9ni7WU-e1xksiQoZrIojBTKoIKaEouaN1yZmpW0UoJQQzQWSgqKWIWZ4UKWkigpy1oILZFkppyCu6N39G6z1SG2a7f1Q3rZFphVFGPWNIm6P1LSuxC8Nu3obc_9vsWoPURtU9T2ELVNUROeHfGQsGGp_a_0Dz4_6XkvvFVL_c_BN2d8jM4</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Uscátegui, Yomaira L.</creator><creator>Díaz, Luis E.</creator><creator>Valero, Manuel F.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190228</creationdate><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><author>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimicrobial agents</topic><topic>Applied and Technical Physics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Castor oil</topic><topic>Contact angle</topic><topic>Contact stresses</topic><topic>Differential scanning calorimetry</topic><topic>Diisocyanates</topic><topic>E coli</topic><topic>Elasticity</topic><topic>Fatty acids</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Nanotechnology</topic><topic>Organs</topic><topic>Polymers</topic><topic>Polyols</topic><topic>Polyurethane resins</topic><topic>Protective coatings</topic><topic>Pseudomonas aeruginosa</topic><topic>Raw materials</topic><topic>Skin</topic><topic>Strain analysis</topic><topic>Surgical implants</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Transplants & implants</topic><topic>Triglycerides</topic><topic>Vegetable oils</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uscátegui, Yomaira L.</creatorcontrib><creatorcontrib>Díaz, Luis E.</creatorcontrib><creatorcontrib>Valero, Manuel F.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uscátegui, Yomaira L.</au><au>Díaz, Luis E.</au><au>Valero, Manuel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>519</spage><epage>531</epage><pages>519-531</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.448</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-02, Vol.34 (4), p.519-531 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2186511899 |
source | ABI/INFORM global; Springer Nature |
subjects | Antimicrobial agents Applied and Technical Physics Biocompatibility Biomaterials Biomedical materials Castor oil Contact angle Contact stresses Differential scanning calorimetry Diisocyanates E coli Elasticity Fatty acids Inorganic Chemistry Materials Engineering Materials research Materials Science Mechanical properties Medical equipment Nanotechnology Organs Polymers Polyols Polyurethane resins Protective coatings Pseudomonas aeruginosa Raw materials Skin Strain analysis Surgical implants Synthesis Thermogravimetric analysis Tissue engineering Transplants & implants Triglycerides Vegetable oils Wound healing |
title | In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20biocompatibility%20of%20polyurethanes%20synthesized%20with%20castor%20oil%20polyols%20for%20biomedical%20devices&rft.jtitle=Journal%20of%20materials%20research&rft.au=Usc%C3%A1tegui,%20Yomaira%20L.&rft.date=2019-02-28&rft.volume=34&rft.issue=4&rft.spage=519&rft.epage=531&rft.pages=519-531&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.448&rft_dat=%3Cproquest_cross%3E2186511899%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186511899&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_448&rfr_iscdi=true |