Loading…

In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices

Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2019-02, Vol.34 (4), p.519-531
Main Authors: Uscátegui, Yomaira L., Díaz, Luis E., Valero, Manuel F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3
cites cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3
container_end_page 531
container_issue 4
container_start_page 519
container_title Journal of materials research
container_volume 34
creator Uscátegui, Yomaira L.
Díaz, Luis E.
Valero, Manuel F.
description Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.
doi_str_mv 10.1557/jmr.2018.448
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186511899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_448</cupid><sourcerecordid>2186511899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</originalsourceid><addsrcrecordid>eNqFkF1LwzAUQIMoOKdv_oCAr7YmbdKmjzL8GAx80eeSzy2jbbokm8xfb-YGPolPlwvnngsHgFuMckxp_bDufV4gzHJC2BmYFIiQjJZFdQ4miDGSFQ0ml-AqhDVCmKKaTMBmPsCdjd5BPihoD8vOQWGddP3IoxW2s3EPnYGj6_Zbr-OKDzrAsB_iSgf7pRX8tHEFJQ_Reehs90O6LkCT9mTqtbKSd1DpnZU6XIMLw7ugb05zCj6en95nr9ni7WU-e1xksiQoZrIojBTKoIKaEouaN1yZmpW0UoJQQzQWSgqKWIWZ4UKWkigpy1oILZFkppyCu6N39G6z1SG2a7f1Q3rZFphVFGPWNIm6P1LSuxC8Nu3obc_9vsWoPURtU9T2ELVNUROeHfGQsGGp_a_0Dz4_6XkvvFVL_c_BN2d8jM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186511899</pqid></control><display><type>article</type><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</creator><creatorcontrib>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</creatorcontrib><description>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.448</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Antimicrobial agents ; Applied and Technical Physics ; Biocompatibility ; Biomaterials ; Biomedical materials ; Castor oil ; Contact angle ; Contact stresses ; Differential scanning calorimetry ; Diisocyanates ; E coli ; Elasticity ; Fatty acids ; Inorganic Chemistry ; Materials Engineering ; Materials research ; Materials Science ; Mechanical properties ; Medical equipment ; Nanotechnology ; Organs ; Polymers ; Polyols ; Polyurethane resins ; Protective coatings ; Pseudomonas aeruginosa ; Raw materials ; Skin ; Strain analysis ; Surgical implants ; Synthesis ; Thermogravimetric analysis ; Tissue engineering ; Transplants &amp; implants ; Triglycerides ; Vegetable oils ; Wound healing</subject><ispartof>Journal of materials research, 2019-02, Vol.34 (4), p.519-531</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</citedby><cites>FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2186511899/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2186511899?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Uscátegui, Yomaira L.</creatorcontrib><creatorcontrib>Díaz, Luis E.</creatorcontrib><creatorcontrib>Valero, Manuel F.</creatorcontrib><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</description><subject>Antimicrobial agents</subject><subject>Applied and Technical Physics</subject><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Castor oil</subject><subject>Contact angle</subject><subject>Contact stresses</subject><subject>Differential scanning calorimetry</subject><subject>Diisocyanates</subject><subject>E coli</subject><subject>Elasticity</subject><subject>Fatty acids</subject><subject>Inorganic Chemistry</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Nanotechnology</subject><subject>Organs</subject><subject>Polymers</subject><subject>Polyols</subject><subject>Polyurethane resins</subject><subject>Protective coatings</subject><subject>Pseudomonas aeruginosa</subject><subject>Raw materials</subject><subject>Skin</subject><subject>Strain analysis</subject><subject>Surgical implants</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Tissue engineering</subject><subject>Transplants &amp; implants</subject><subject>Triglycerides</subject><subject>Vegetable oils</subject><subject>Wound healing</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkF1LwzAUQIMoOKdv_oCAr7YmbdKmjzL8GAx80eeSzy2jbbokm8xfb-YGPolPlwvnngsHgFuMckxp_bDufV4gzHJC2BmYFIiQjJZFdQ4miDGSFQ0ml-AqhDVCmKKaTMBmPsCdjd5BPihoD8vOQWGddP3IoxW2s3EPnYGj6_Zbr-OKDzrAsB_iSgf7pRX8tHEFJQ_Reehs90O6LkCT9mTqtbKSd1DpnZU6XIMLw7ugb05zCj6en95nr9ni7WU-e1xksiQoZrIojBTKoIKaEouaN1yZmpW0UoJQQzQWSgqKWIWZ4UKWkigpy1oILZFkppyCu6N39G6z1SG2a7f1Q3rZFphVFGPWNIm6P1LSuxC8Nu3obc_9vsWoPURtU9T2ELVNUROeHfGQsGGp_a_0Dz4_6XkvvFVL_c_BN2d8jM4</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Uscátegui, Yomaira L.</creator><creator>Díaz, Luis E.</creator><creator>Valero, Manuel F.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20190228</creationdate><title>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</title><author>Uscátegui, Yomaira L. ; Díaz, Luis E. ; Valero, Manuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimicrobial agents</topic><topic>Applied and Technical Physics</topic><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Castor oil</topic><topic>Contact angle</topic><topic>Contact stresses</topic><topic>Differential scanning calorimetry</topic><topic>Diisocyanates</topic><topic>E coli</topic><topic>Elasticity</topic><topic>Fatty acids</topic><topic>Inorganic Chemistry</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Nanotechnology</topic><topic>Organs</topic><topic>Polymers</topic><topic>Polyols</topic><topic>Polyurethane resins</topic><topic>Protective coatings</topic><topic>Pseudomonas aeruginosa</topic><topic>Raw materials</topic><topic>Skin</topic><topic>Strain analysis</topic><topic>Surgical implants</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Tissue engineering</topic><topic>Transplants &amp; implants</topic><topic>Triglycerides</topic><topic>Vegetable oils</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uscátegui, Yomaira L.</creatorcontrib><creatorcontrib>Díaz, Luis E.</creatorcontrib><creatorcontrib>Valero, Manuel F.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uscátegui, Yomaira L.</au><au>Díaz, Luis E.</au><au>Valero, Manuel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>34</volume><issue>4</issue><spage>519</spage><epage>531</epage><pages>519-531</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.448</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2019-02, Vol.34 (4), p.519-531
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2186511899
source ABI/INFORM global; Springer Nature
subjects Antimicrobial agents
Applied and Technical Physics
Biocompatibility
Biomaterials
Biomedical materials
Castor oil
Contact angle
Contact stresses
Differential scanning calorimetry
Diisocyanates
E coli
Elasticity
Fatty acids
Inorganic Chemistry
Materials Engineering
Materials research
Materials Science
Mechanical properties
Medical equipment
Nanotechnology
Organs
Polymers
Polyols
Polyurethane resins
Protective coatings
Pseudomonas aeruginosa
Raw materials
Skin
Strain analysis
Surgical implants
Synthesis
Thermogravimetric analysis
Tissue engineering
Transplants & implants
Triglycerides
Vegetable oils
Wound healing
title In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A16%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20and%20in%20vivo%20biocompatibility%20of%20polyurethanes%20synthesized%20with%20castor%20oil%20polyols%20for%20biomedical%20devices&rft.jtitle=Journal%20of%20materials%20research&rft.au=Usc%C3%A1tegui,%20Yomaira%20L.&rft.date=2019-02-28&rft.volume=34&rft.issue=4&rft.spage=519&rft.epage=531&rft.pages=519-531&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.448&rft_dat=%3Cproquest_cross%3E2186511899%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-c22fcbdf025f31b7a9adf78356db45f4e1bdcb508618fabc3c4dcc37bbec0c8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186511899&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_448&rfr_iscdi=true