Loading…
On posterior consistency in nonparametric regression problems
We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the cr...
Saved in:
Published in: | Journal of multivariate analysis 2007-11, Vol.98 (10), p.1969-1987 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83 |
---|---|
cites | cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83 |
container_end_page | 1987 |
container_issue | 10 |
container_start_page | 1969 |
container_title | Journal of multivariate analysis |
container_volume | 98 |
creator | Choi, Taeryon Schervish, Mark J. |
description | We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems. |
doi_str_mv | 10.1016/j.jmva.2007.01.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218666157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X07000048</els_id><sourcerecordid>1381400601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</originalsourceid><addsrcrecordid>eNp9kE1L5TAUhoM44PWOf8BVEVy25qNNG9CFiDMjKG5mwF1I01NNuU1qUi_cfz-nXtGdi5Mv3vecNw8hp4wWjDJ5MRTDuDUFp7QuKCsoLQ_IilFV5TUvxSFZ4Uud80o9HZHjlAZKGavqckWuHn02hTRDdCFmNvjk8OLtLnM-88FPJpoR5uhsFuE5QkouoCOGdgNj-kl-9GaT4ORjX5N_v27_3vzJ7x9_391c3-e2rNmcW6sUbzEIr4FK0fVtK3knSy5My6tONL1VhnW1gaavVNs1nZICQLbWtErYRqzJ2b4vDn59gzTrIbxFjyM1Z42UEj-DIr4X2RhSitDrKbrRxJ1mVC-U9KAXSnqhpCnTyARND3tThAnspwMAFqk3equFUQ0uO6x3pzAOC3sKMy0HJZVmqqn1yzxiv_OPpCZZs-mj8dalryRqySsq1F3udYDYtg6iTtYhd-hcBDvrLrjvYv8H5cuYdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218666157</pqid></control><display><type>article</type><title>On posterior consistency in nonparametric regression problems</title><source>Elsevier</source><creator>Choi, Taeryon ; Schervish, Mark J.</creator><creatorcontrib>Choi, Taeryon ; Schervish, Mark J.</creatorcontrib><description>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2007.01.004</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Almost sure consistency ; Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve ; Differentiable functions ; Distribution theory ; Empirical probability measure ; Errors ; Exact sciences and technology ; Hellinger metric ; In probability metric ; Linear inference, regression ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Normal distribution ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; Sciences and techniques of general use ; Sieve ; Statistics ; Studies ; Variance analysis</subject><ispartof>Journal of multivariate analysis, 2007-11, Vol.98 (10), p.1969-1987</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group Nov 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</citedby><cites>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19218635$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a98_3ay_3a2007_3ai_3a10_3ap_3a1969-1987.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Taeryon</creatorcontrib><creatorcontrib>Schervish, Mark J.</creatorcontrib><title>On posterior consistency in nonparametric regression problems</title><title>Journal of multivariate analysis</title><description>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</description><subject>Almost sure consistency</subject><subject>Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve</subject><subject>Differentiable functions</subject><subject>Distribution theory</subject><subject>Empirical probability measure</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Hellinger metric</subject><subject>In probability metric</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Normal distribution</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Sieve</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1L5TAUhoM44PWOf8BVEVy25qNNG9CFiDMjKG5mwF1I01NNuU1qUi_cfz-nXtGdi5Mv3vecNw8hp4wWjDJ5MRTDuDUFp7QuKCsoLQ_IilFV5TUvxSFZ4Uud80o9HZHjlAZKGavqckWuHn02hTRDdCFmNvjk8OLtLnM-88FPJpoR5uhsFuE5QkouoCOGdgNj-kl-9GaT4ORjX5N_v27_3vzJ7x9_391c3-e2rNmcW6sUbzEIr4FK0fVtK3knSy5My6tONL1VhnW1gaavVNs1nZICQLbWtErYRqzJ2b4vDn59gzTrIbxFjyM1Z42UEj-DIr4X2RhSitDrKbrRxJ1mVC-U9KAXSnqhpCnTyARND3tThAnspwMAFqk3equFUQ0uO6x3pzAOC3sKMy0HJZVmqqn1yzxiv_OPpCZZs-mj8dalryRqySsq1F3udYDYtg6iTtYhd-hcBDvrLrjvYv8H5cuYdw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Choi, Taeryon</creator><creator>Schervish, Mark J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20071101</creationdate><title>On posterior consistency in nonparametric regression problems</title><author>Choi, Taeryon ; Schervish, Mark J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Almost sure consistency</topic><topic>Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve</topic><topic>Differentiable functions</topic><topic>Distribution theory</topic><topic>Empirical probability measure</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Hellinger metric</topic><topic>In probability metric</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Normal distribution</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Sieve</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Taeryon</creatorcontrib><creatorcontrib>Schervish, Mark J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Taeryon</au><au>Schervish, Mark J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On posterior consistency in nonparametric regression problems</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>98</volume><issue>10</issue><spage>1969</spage><epage>1987</epage><pages>1969-1987</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2007.01.004</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2007-11, Vol.98 (10), p.1969-1987 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_218666157 |
source | Elsevier |
subjects | Almost sure consistency Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve Differentiable functions Distribution theory Empirical probability measure Errors Exact sciences and technology Hellinger metric In probability metric Linear inference, regression Mathematics Multivariate analysis Nonparametric inference Normal distribution Probability and statistics Probability theory and stochastic processes Regression analysis Sciences and techniques of general use Sieve Statistics Studies Variance analysis |
title | On posterior consistency in nonparametric regression problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20posterior%20consistency%20in%20nonparametric%20regression%20problems&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Choi,%20Taeryon&rft.date=2007-11-01&rft.volume=98&rft.issue=10&rft.spage=1969&rft.epage=1987&rft.pages=1969-1987&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2007.01.004&rft_dat=%3Cproquest_cross%3E1381400601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218666157&rft_id=info:pmid/&rfr_iscdi=true |