Loading…

On posterior consistency in nonparametric regression problems

We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the cr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of multivariate analysis 2007-11, Vol.98 (10), p.1969-1987
Main Authors: Choi, Taeryon, Schervish, Mark J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83
cites cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83
container_end_page 1987
container_issue 10
container_start_page 1969
container_title Journal of multivariate analysis
container_volume 98
creator Choi, Taeryon
Schervish, Mark J.
description We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.
doi_str_mv 10.1016/j.jmva.2007.01.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218666157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X07000048</els_id><sourcerecordid>1381400601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</originalsourceid><addsrcrecordid>eNp9kE1L5TAUhoM44PWOf8BVEVy25qNNG9CFiDMjKG5mwF1I01NNuU1qUi_cfz-nXtGdi5Mv3vecNw8hp4wWjDJ5MRTDuDUFp7QuKCsoLQ_IilFV5TUvxSFZ4Uud80o9HZHjlAZKGavqckWuHn02hTRDdCFmNvjk8OLtLnM-88FPJpoR5uhsFuE5QkouoCOGdgNj-kl-9GaT4ORjX5N_v27_3vzJ7x9_391c3-e2rNmcW6sUbzEIr4FK0fVtK3knSy5My6tONL1VhnW1gaavVNs1nZICQLbWtErYRqzJ2b4vDn59gzTrIbxFjyM1Z42UEj-DIr4X2RhSitDrKbrRxJ1mVC-U9KAXSnqhpCnTyARND3tThAnspwMAFqk3equFUQ0uO6x3pzAOC3sKMy0HJZVmqqn1yzxiv_OPpCZZs-mj8dalryRqySsq1F3udYDYtg6iTtYhd-hcBDvrLrjvYv8H5cuYdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218666157</pqid></control><display><type>article</type><title>On posterior consistency in nonparametric regression problems</title><source>Elsevier</source><creator>Choi, Taeryon ; Schervish, Mark J.</creator><creatorcontrib>Choi, Taeryon ; Schervish, Mark J.</creatorcontrib><description>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2007.01.004</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Almost sure consistency ; Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve ; Differentiable functions ; Distribution theory ; Empirical probability measure ; Errors ; Exact sciences and technology ; Hellinger metric ; In probability metric ; Linear inference, regression ; Mathematics ; Multivariate analysis ; Nonparametric inference ; Normal distribution ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; Sciences and techniques of general use ; Sieve ; Statistics ; Studies ; Variance analysis</subject><ispartof>Journal of multivariate analysis, 2007-11, Vol.98 (10), p.1969-1987</ispartof><rights>2007 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Nov 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</citedby><cites>FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19218635$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a98_3ay_3a2007_3ai_3a10_3ap_3a1969-1987.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Taeryon</creatorcontrib><creatorcontrib>Schervish, Mark J.</creatorcontrib><title>On posterior consistency in nonparametric regression problems</title><title>Journal of multivariate analysis</title><description>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</description><subject>Almost sure consistency</subject><subject>Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve</subject><subject>Differentiable functions</subject><subject>Distribution theory</subject><subject>Empirical probability measure</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Hellinger metric</subject><subject>In probability metric</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Nonparametric inference</subject><subject>Normal distribution</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>Sciences and techniques of general use</subject><subject>Sieve</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variance analysis</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1L5TAUhoM44PWOf8BVEVy25qNNG9CFiDMjKG5mwF1I01NNuU1qUi_cfz-nXtGdi5Mv3vecNw8hp4wWjDJ5MRTDuDUFp7QuKCsoLQ_IilFV5TUvxSFZ4Uud80o9HZHjlAZKGavqckWuHn02hTRDdCFmNvjk8OLtLnM-88FPJpoR5uhsFuE5QkouoCOGdgNj-kl-9GaT4ORjX5N_v27_3vzJ7x9_391c3-e2rNmcW6sUbzEIr4FK0fVtK3knSy5My6tONL1VhnW1gaavVNs1nZICQLbWtErYRqzJ2b4vDn59gzTrIbxFjyM1Z42UEj-DIr4X2RhSitDrKbrRxJ1mVC-U9KAXSnqhpCnTyARND3tThAnspwMAFqk3equFUQ0uO6x3pzAOC3sKMy0HJZVmqqn1yzxiv_OPpCZZs-mj8dalryRqySsq1F3udYDYtg6iTtYhd-hcBDvrLrjvYv8H5cuYdw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Choi, Taeryon</creator><creator>Schervish, Mark J.</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20071101</creationdate><title>On posterior consistency in nonparametric regression problems</title><author>Choi, Taeryon ; Schervish, Mark J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Almost sure consistency</topic><topic>Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve</topic><topic>Differentiable functions</topic><topic>Distribution theory</topic><topic>Empirical probability measure</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Hellinger metric</topic><topic>In probability metric</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Nonparametric inference</topic><topic>Normal distribution</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>Sciences and techniques of general use</topic><topic>Sieve</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Taeryon</creatorcontrib><creatorcontrib>Schervish, Mark J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Taeryon</au><au>Schervish, Mark J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On posterior consistency in nonparametric regression problems</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>98</volume><issue>10</issue><spage>1969</spage><epage>1987</epage><pages>1969-1987</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>We provide sufficient conditions to establish posterior consistency in nonparametric regression problems with Gaussian errors when suitable prior distributions are used for the unknown regression function and the noise variance. When the prior under consideration satisfies certain properties, the crucial condition for posterior consistency is to construct tests that separate from the outside of the suitable neighborhoods of the parameter. Under appropriate conditions on the regression function, we show there exist tests, of which the type I error and the type II error probabilities are exponentially small for distinguishing the true parameter from the complements of the suitable neighborhoods of the parameter. These sufficient conditions enable us to establish almost sure consistency based on the appropriate metrics with multi-dimensional covariate values fixed in advance or sampled from a probability distribution. We consider several examples of nonparametric regression problems.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2007.01.004</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2007-11, Vol.98 (10), p.1969-1987
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_218666157
source Elsevier
subjects Almost sure consistency
Almost sure consistency Differentiable functions Empirical probability measure Hellinger metric In probability metric Sieve
Differentiable functions
Distribution theory
Empirical probability measure
Errors
Exact sciences and technology
Hellinger metric
In probability metric
Linear inference, regression
Mathematics
Multivariate analysis
Nonparametric inference
Normal distribution
Probability and statistics
Probability theory and stochastic processes
Regression analysis
Sciences and techniques of general use
Sieve
Statistics
Studies
Variance analysis
title On posterior consistency in nonparametric regression problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20posterior%20consistency%20in%20nonparametric%20regression%20problems&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Choi,%20Taeryon&rft.date=2007-11-01&rft.volume=98&rft.issue=10&rft.spage=1969&rft.epage=1987&rft.pages=1969-1987&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2007.01.004&rft_dat=%3Cproquest_cross%3E1381400601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-cc992b24327e063dfbb62d6423ab25d38fc9a1d7ae8f59bd8d963ee6bcab93c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=218666157&rft_id=info:pmid/&rfr_iscdi=true