Loading…

Cellular morphogenesis of three-dimensional tensegrity structures

The topology and form finding of tensegrity structures have been studied extensively since the introduction of the tensegrity concept. However, most of these studies address topology and form separately, where the former represented a research focus of rigidity theory and graph theory, while the lat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-02
Main Authors: Aloui, Omar, Flores, Jessica, Orden, David, Rhode-Barbarigos, Landolf
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The topology and form finding of tensegrity structures have been studied extensively since the introduction of the tensegrity concept. However, most of these studies address topology and form separately, where the former represented a research focus of rigidity theory and graph theory, while the latter attracted the attention of structural engineers. In this paper, a biomimetic approach for the combined topology and form finding of spatial tensegrity systems is introduced. Tensegrity cells, elementary infinitesimally rigid self-stressed structures that have been proven to compose any tensegrity, are used to generate more complex tensegrity structures through the morphogenesis mechanisms of adhesion and fusion. A methodology for constructing a basis to describe the self-stress space is also provided. Through the definition of self-stress, the cellular morphogenesis method can integrate design considerations, such as a desired shape or number of nodes and members, providing great flexibility and control over the tensegrity structure generated.
ISSN:2331-8422
DOI:10.48550/arxiv.1902.09953