Loading…

Spherical centroid bodies

The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions - one geometric, the other probabilistic in nature - are given and shown to lead to the same objects. The geometric approach is then used to establish a number of...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-02
Main Authors: Besau, Florian, Hack, Thomas, Pivovarov, Peter, Schuster, Franz E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Besau, Florian
Hack, Thomas
Pivovarov, Peter
Schuster, Franz E
description The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions - one geometric, the other probabilistic in nature - are given and shown to lead to the same objects. The geometric approach is then used to establish a number of basic properties of spherical centroid bodies, while the probabilistic approach inspires the proof of a spherical analogue of the classical polar Busemann-Petty centroid inequality.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186923370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186923370</sourcerecordid><originalsourceid>FETCH-proquest_journals_21869233703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDC7ISC3KTE7MUUhOzSspys9MUUjKT8lMLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQwszS6Al5gbGxKkCAKFEKpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186923370</pqid></control><display><type>article</type><title>Spherical centroid bodies</title><source>Publicly Available Content Database</source><creator>Besau, Florian ; Hack, Thomas ; Pivovarov, Peter ; Schuster, Franz E</creator><creatorcontrib>Besau, Florian ; Hack, Thomas ; Pivovarov, Peter ; Schuster, Franz E</creatorcontrib><description>The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions - one geometric, the other probabilistic in nature - are given and shown to lead to the same objects. The geometric approach is then used to establish a number of basic properties of spherical centroid bodies, while the probabilistic approach inspires the proof of a spherical analogue of the classical polar Busemann-Petty centroid inequality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Euclidean geometry</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2186923370?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,36991,44569</link.rule.ids></links><search><creatorcontrib>Besau, Florian</creatorcontrib><creatorcontrib>Hack, Thomas</creatorcontrib><creatorcontrib>Pivovarov, Peter</creatorcontrib><creatorcontrib>Schuster, Franz E</creatorcontrib><title>Spherical centroid bodies</title><title>arXiv.org</title><description>The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions - one geometric, the other probabilistic in nature - are given and shown to lead to the same objects. The geometric approach is then used to establish a number of basic properties of spherical centroid bodies, while the probabilistic approach inspires the proof of a spherical analogue of the classical polar Busemann-Petty centroid inequality.</description><subject>Convexity</subject><subject>Euclidean geometry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDC7ISC3KTE7MUUhOzSspys9MUUjKT8lMLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQwszS6Al5gbGxKkCAKFEKpk</recordid><startdate>20190227</startdate><enddate>20190227</enddate><creator>Besau, Florian</creator><creator>Hack, Thomas</creator><creator>Pivovarov, Peter</creator><creator>Schuster, Franz E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190227</creationdate><title>Spherical centroid bodies</title><author>Besau, Florian ; Hack, Thomas ; Pivovarov, Peter ; Schuster, Franz E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21869233703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convexity</topic><topic>Euclidean geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Besau, Florian</creatorcontrib><creatorcontrib>Hack, Thomas</creatorcontrib><creatorcontrib>Pivovarov, Peter</creatorcontrib><creatorcontrib>Schuster, Franz E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besau, Florian</au><au>Hack, Thomas</au><au>Pivovarov, Peter</au><au>Schuster, Franz E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spherical centroid bodies</atitle><jtitle>arXiv.org</jtitle><date>2019-02-27</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The spherical centroid body of a centrally-symmetric convex body in the Euclidean unit sphere is introduced. Two alternative definitions - one geometric, the other probabilistic in nature - are given and shown to lead to the same objects. The geometric approach is then used to establish a number of basic properties of spherical centroid bodies, while the probabilistic approach inspires the proof of a spherical analogue of the classical polar Busemann-Petty centroid inequality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2186923370
source Publicly Available Content Database
subjects Convexity
Euclidean geometry
title Spherical centroid bodies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A58%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spherical%20centroid%20bodies&rft.jtitle=arXiv.org&rft.au=Besau,%20Florian&rft.date=2019-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186923370%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21869233703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2186923370&rft_id=info:pmid/&rfr_iscdi=true