Loading…
Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control
We show via examples that, when solving optimal control problems, representing the optimal state and input trajectory directly using interpolation schemes may not be the best choice. Due to the lack of considerations for solution trajectories in-between collocation points, large errors may occur, po...
Saved in:
Published in: | arXiv.org 2019-06 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nie, Yuanbo Kerrigan, Eric C |
description | We show via examples that, when solving optimal control problems, representing the optimal state and input trajectory directly using interpolation schemes may not be the best choice. Due to the lack of considerations for solution trajectories in-between collocation points, large errors may occur, posing risks if this solution is to be applied. A novel solution representation method is proposed, capable of yielding a solution of much higher accuracy for the same discretization mesh. This is achieved by minimizing the integral of the residual error for the overall trajectory, instead of forcing the errors to be zero only at collocation points. In this way, the requirement for mesh resolution can be significantly reduced, leaving the problem dimensions relatively small. This particular formulation also avoids some of the drawbacks found in the earlier work of integrated residual minimization, leading to more efficient computations. |
doi_str_mv | 10.48550/arxiv.1902.11041 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2187126134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187126134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-2a4d7f072995cfbe58a8476de3901aaed6039ca2b40df2fa07de1820691f0f23</originalsourceid><addsrcrecordid>eNotjUtLAzEURoMgWGp_gLuA66k3N8k8lqXUB1QLtvt6m7mBlOmkZjLiz7eoq_PBge8Icadgbmpr4YHSd_iaqwZwrhQYdSUmqLUqaoN4I2bDcAQALCu0Vk_Ex8r74AL3WVLfyteYWC6cGxNllu98TjxcHOUQexm93MZu_N27REd2OabAgwy9fBtPnIKjTm7OOZwuXMY-p9jdimtP3cCzf07F9nG1Wz4X683Ty3KxLsiiKZBMW3mosGms8we2NdWmKlvWDSgibkvQjSM8GGg9eoKqZVUjlI3y4FFPxf3f6znFz5GHvD_GMfWX4B5VXSkslTb6B_bvVpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187126134</pqid></control><display><type>article</type><title>Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control</title><source>Publicly Available Content Database</source><creator>Nie, Yuanbo ; Kerrigan, Eric C</creator><creatorcontrib>Nie, Yuanbo ; Kerrigan, Eric C</creatorcontrib><description>We show via examples that, when solving optimal control problems, representing the optimal state and input trajectory directly using interpolation schemes may not be the best choice. Due to the lack of considerations for solution trajectories in-between collocation points, large errors may occur, posing risks if this solution is to be applied. A novel solution representation method is proposed, capable of yielding a solution of much higher accuracy for the same discretization mesh. This is achieved by minimizing the integral of the residual error for the overall trajectory, instead of forcing the errors to be zero only at collocation points. In this way, the requirement for mesh resolution can be significantly reduced, leaving the problem dimensions relatively small. This particular formulation also avoids some of the drawbacks found in the earlier work of integrated residual minimization, leading to more efficient computations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1902.11041</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Collocation ; Grid refinement (mathematics) ; Interpolation ; Optimal control ; Optimization ; Representations ; Trajectory control</subject><ispartof>arXiv.org, 2019-06</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2187126134?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Nie, Yuanbo</creatorcontrib><creatorcontrib>Kerrigan, Eric C</creatorcontrib><title>Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control</title><title>arXiv.org</title><description>We show via examples that, when solving optimal control problems, representing the optimal state and input trajectory directly using interpolation schemes may not be the best choice. Due to the lack of considerations for solution trajectories in-between collocation points, large errors may occur, posing risks if this solution is to be applied. A novel solution representation method is proposed, capable of yielding a solution of much higher accuracy for the same discretization mesh. This is achieved by minimizing the integral of the residual error for the overall trajectory, instead of forcing the errors to be zero only at collocation points. In this way, the requirement for mesh resolution can be significantly reduced, leaving the problem dimensions relatively small. This particular formulation also avoids some of the drawbacks found in the earlier work of integrated residual minimization, leading to more efficient computations.</description><subject>Collocation</subject><subject>Grid refinement (mathematics)</subject><subject>Interpolation</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Representations</subject><subject>Trajectory control</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEURoMgWGp_gLuA66k3N8k8lqXUB1QLtvt6m7mBlOmkZjLiz7eoq_PBge8Icadgbmpr4YHSd_iaqwZwrhQYdSUmqLUqaoN4I2bDcAQALCu0Vk_Ex8r74AL3WVLfyteYWC6cGxNllu98TjxcHOUQexm93MZu_N27REd2OabAgwy9fBtPnIKjTm7OOZwuXMY-p9jdimtP3cCzf07F9nG1Wz4X683Ty3KxLsiiKZBMW3mosGms8we2NdWmKlvWDSgibkvQjSM8GGg9eoKqZVUjlI3y4FFPxf3f6znFz5GHvD_GMfWX4B5VXSkslTb6B_bvVpc</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Nie, Yuanbo</creator><creator>Kerrigan, Eric C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190605</creationdate><title>Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control</title><author>Nie, Yuanbo ; Kerrigan, Eric C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-2a4d7f072995cfbe58a8476de3901aaed6039ca2b40df2fa07de1820691f0f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Collocation</topic><topic>Grid refinement (mathematics)</topic><topic>Interpolation</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Representations</topic><topic>Trajectory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Nie, Yuanbo</creatorcontrib><creatorcontrib>Kerrigan, Eric C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Yuanbo</au><au>Kerrigan, Eric C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control</atitle><jtitle>arXiv.org</jtitle><date>2019-06-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We show via examples that, when solving optimal control problems, representing the optimal state and input trajectory directly using interpolation schemes may not be the best choice. Due to the lack of considerations for solution trajectories in-between collocation points, large errors may occur, posing risks if this solution is to be applied. A novel solution representation method is proposed, capable of yielding a solution of much higher accuracy for the same discretization mesh. This is achieved by minimizing the integral of the residual error for the overall trajectory, instead of forcing the errors to be zero only at collocation points. In this way, the requirement for mesh resolution can be significantly reduced, leaving the problem dimensions relatively small. This particular formulation also avoids some of the drawbacks found in the earlier work of integrated residual minimization, leading to more efficient computations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1902.11041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2187126134 |
source | Publicly Available Content Database |
subjects | Collocation Grid refinement (mathematics) Interpolation Optimal control Optimization Representations Trajectory control |
title | Efficient and More Accurate Representation of Solution Trajectories in Numerical Optimal Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20More%20Accurate%20Representation%20of%20Solution%20Trajectories%20in%20Numerical%20Optimal%20Control&rft.jtitle=arXiv.org&rft.au=Nie,%20Yuanbo&rft.date=2019-06-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1902.11041&rft_dat=%3Cproquest%3E2187126134%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-2a4d7f072995cfbe58a8476de3901aaed6039ca2b40df2fa07de1820691f0f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187126134&rft_id=info:pmid/&rfr_iscdi=true |