Loading…
An efficient traffic sign recognition based on graph embedding features
Traffic sign recognition (TSR) is one of the significant modules of an intelligent transportation system. It instantly assists the drivers to efficiently recognize the traffic sign. Recognition of traffic sign is a large-scale feature learning problem with different real-world appearances. The main...
Saved in:
Published in: | Neural computing & applications 2019-02, Vol.31 (2), p.395-407 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traffic sign recognition (TSR) is one of the significant modules of an intelligent transportation system. It instantly assists the drivers to efficiently recognize the traffic sign. Recognition of traffic sign is a large-scale feature learning problem with different real-world appearances. The main goal of this paper is to develop an efficient TSR method, which can run on an ordinary personal computer (PC). In the proposed method, GIST descriptors of the traffic sign images are extracted and subjected to graph-based linear discriminant analysis to reduce the dimension. Moreover, it effectively learns the discriminative subspace through the graph structure with increased computational efficiency. An efficient TSR module is built by conducting series of experiments using support vector machine, extreme learning machine, and
k
-nearest neighbor (
k
-NN) classifiers on available public datasets. Our approach achieved the highest recognition accuracy of 96.33 and 97.79% using
k
-NN classifier for German Traffic Sign Recognition Benchmark (GTSRB) and Belgium Traffic Sign Classification Benchmark (BelgiumTSC), respectively. Also it achieved 99.1% accuracy for a subcategory of GTSRB traffic signs and able to predict the class of unknown traffic sign within 0.0019 s on an ordinary PC. Hence, it can be used in real-world driver assistance system. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-017-3063-z |