Loading…
Low-cycle fatigue of single crystal nickel-based superalloy – mechanical testing and TEM characterisation
Low-cycle fatigue (LCF) is studied for a nickel-based single-crystal superalloy in this paper, with a focus on the effect of crystal orientation and temperature. Specifically, cyclic deformation of the alloy was compared for [001]- and [111]-oriented samples tested under strain-controlled conditions...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-01, Vol.744, p.538-547 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low-cycle fatigue (LCF) is studied for a nickel-based single-crystal superalloy in this paper, with a focus on the effect of crystal orientation and temperature. Specifically, cyclic deformation of the alloy was compared for [001]- and [111]-oriented samples tested under strain-controlled conditions at room temperature and 825 °C. Either cyclic hardening or softening was observed during the LCF process, depending on the strain amplitude, crystallographic orientation and temperature. LCF life was also reduced significantly by changing loading orientation from [001] to [111] or increasing temperature to 825 °C. Employing a comprehensive study with transmission electron microscopy (TEM), a connection between microstructure and mechanical behaviour of the alloy is discussed. It was found that the processes of γ′-precipitate dissolution and dislocation recovery were responsible for cyclic softening. Alignments and pile-ups of dislocations in the γ matrix, which prohibited their movement and reduced the interaction of dislocations on different slip systems, contributed to cyclic hardening. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2018.12.084 |