Loading…
Multi-type subcritical branching processes in a random environment
We study the asymptotic behavior of the survival probability of a multi-type branching process in a random environment. In the one-dimensional situation, the class of processes considered corresponds to the strongly subcritical case. We also prove a conditional limit theorem describing the distribut...
Saved in:
Published in: | Advances in applied probability 2018-12, Vol.50 (A), p.281-289 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733 |
container_end_page | 289 |
container_issue | A |
container_start_page | 281 |
container_title | Advances in applied probability |
container_volume | 50 |
creator | Vatutin, Vladimir Wachtel, Vitali |
description | We study the asymptotic behavior of the survival probability of a multi-type branching process in a random environment. In the one-dimensional situation, the class of processes considered corresponds to the strongly subcritical case. We also prove a conditional limit theorem describing the distribution of the number of particles in the process given its survival for a long time. |
doi_str_mv | 10.1017/apr.2018.86 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187590865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_apr_2018_86</cupid><sourcerecordid>2187590865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKsn_0DAo6RONrv5OGrxCype9Byy2aSmdD9MdoX-e1Na8OJpmOGZd4YHoWsKCwpU3JkhLgqgciH5CZrRUlSEAy9P0QwAKJFcyHN0kdImt0xImKGHt2k7BjLuBofTVNsYxmDNFtfRdPYrdGs8xN66lFzCocMG53nTt9h1PyH2Xeu68RKdebNN7upY5-jz6fFj-UJW78-vy_sVsYzxkRgrG6q4ZUaWwtfeeAdKUWUbBlWpasdUqTx4CaaR3AjB66KSlDqeF7xgbI5uDrn5o-_JpVFv-il2-aQuqBSVAsmrTN0eKBv7lKLzeoihNXGnKei9JJ0l6b0kLXmmyZE2bR1Ds3Z_of_xv-94aVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187590865</pqid></control><display><type>article</type><title>Multi-type subcritical branching processes in a random environment</title><source>ABI/INFORM global</source><source>Cambridge University Press</source><source>JSTOR</source><creator>Vatutin, Vladimir ; Wachtel, Vitali</creator><creatorcontrib>Vatutin, Vladimir ; Wachtel, Vitali</creatorcontrib><description>We study the asymptotic behavior of the survival probability of a multi-type branching process in a random environment. In the one-dimensional situation, the class of processes considered corresponds to the strongly subcritical case. We also prove a conditional limit theorem describing the distribution of the number of particles in the process given its survival for a long time.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/apr.2018.86</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Branching (mathematics) ; Markov processes ; Original Article ; Probability ; Random walk theory ; Survival ; Theorems</subject><ispartof>Advances in applied probability, 2018-12, Vol.50 (A), p.281-289</ispartof><rights>Copyright © Applied Probability Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733</citedby><cites>FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2187590865?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,72703</link.rule.ids></links><search><creatorcontrib>Vatutin, Vladimir</creatorcontrib><creatorcontrib>Wachtel, Vitali</creatorcontrib><title>Multi-type subcritical branching processes in a random environment</title><title>Advances in applied probability</title><addtitle>Adv. Appl. Probab</addtitle><description>We study the asymptotic behavior of the survival probability of a multi-type branching process in a random environment. In the one-dimensional situation, the class of processes considered corresponds to the strongly subcritical case. We also prove a conditional limit theorem describing the distribution of the number of particles in the process given its survival for a long time.</description><subject>Asymptotic properties</subject><subject>Branching (mathematics)</subject><subject>Markov processes</subject><subject>Original Article</subject><subject>Probability</subject><subject>Random walk theory</subject><subject>Survival</subject><subject>Theorems</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkE1LAzEQhoMoWKsn_0DAo6RONrv5OGrxCype9Byy2aSmdD9MdoX-e1Na8OJpmOGZd4YHoWsKCwpU3JkhLgqgciH5CZrRUlSEAy9P0QwAKJFcyHN0kdImt0xImKGHt2k7BjLuBofTVNsYxmDNFtfRdPYrdGs8xN66lFzCocMG53nTt9h1PyH2Xeu68RKdebNN7upY5-jz6fFj-UJW78-vy_sVsYzxkRgrG6q4ZUaWwtfeeAdKUWUbBlWpasdUqTx4CaaR3AjB66KSlDqeF7xgbI5uDrn5o-_JpVFv-il2-aQuqBSVAsmrTN0eKBv7lKLzeoihNXGnKei9JJ0l6b0kLXmmyZE2bR1Ds3Z_of_xv-94aVQ</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Vatutin, Vladimir</creator><creator>Wachtel, Vitali</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>201812</creationdate><title>Multi-type subcritical branching processes in a random environment</title><author>Vatutin, Vladimir ; Wachtel, Vitali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Branching (mathematics)</topic><topic>Markov processes</topic><topic>Original Article</topic><topic>Probability</topic><topic>Random walk theory</topic><topic>Survival</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatutin, Vladimir</creatorcontrib><creatorcontrib>Wachtel, Vitali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatutin, Vladimir</au><au>Wachtel, Vitali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-type subcritical branching processes in a random environment</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Adv. Appl. Probab</addtitle><date>2018-12</date><risdate>2018</risdate><volume>50</volume><issue>A</issue><spage>281</spage><epage>289</epage><pages>281-289</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>We study the asymptotic behavior of the survival probability of a multi-type branching process in a random environment. In the one-dimensional situation, the class of processes considered corresponds to the strongly subcritical case. We also prove a conditional limit theorem describing the distribution of the number of particles in the process given its survival for a long time.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/apr.2018.86</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2018-12, Vol.50 (A), p.281-289 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_proquest_journals_2187590865 |
source | ABI/INFORM global; Cambridge University Press; JSTOR |
subjects | Asymptotic properties Branching (mathematics) Markov processes Original Article Probability Random walk theory Survival Theorems |
title | Multi-type subcritical branching processes in a random environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-type%20subcritical%20branching%20processes%20in%20a%20random%20environment&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Vatutin,%20Vladimir&rft.date=2018-12&rft.volume=50&rft.issue=A&rft.spage=281&rft.epage=289&rft.pages=281-289&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/apr.2018.86&rft_dat=%3Cproquest_cross%3E2187590865%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ac8d196c3a847fbfafe09919cd30549be3949f0f80ad86a776b25811e6a84f733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187590865&rft_id=info:pmid/&rft_cupid=10_1017_apr_2018_86&rfr_iscdi=true |