Loading…
Multitype branching processes with inhomogeneous Poisson immigration
In this paper we introduce multitype branching processes with inhomogeneous Poisson immigration, and consider in detail the critical Markov case when the local intensity r(t) of the Poisson random measure is a regularly varying function. Various multitype limit distributions (conditional and uncondi...
Saved in:
Published in: | Advances in applied probability 2018-12, Vol.50 (A), p.211-228 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3 |
container_end_page | 228 |
container_issue | A |
container_start_page | 211 |
container_title | Advances in applied probability |
container_volume | 50 |
creator | Mitov, Kosto V. Yanev, Nikolay M. Hyrien, Ollivier |
description | In this paper we introduce multitype branching processes with inhomogeneous Poisson immigration, and consider in detail the critical Markov case when the local intensity r(t) of the Poisson random measure is a regularly varying function. Various multitype limit distributions (conditional and unconditional) are obtained depending on the rate at which r(t) changes with time. The asymptotic behaviour of the first and second moments, and the probability of nonextinction are investigated. |
doi_str_mv | 10.1017/apr.2018.81 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187592130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_apr_2018_81</cupid><sourcerecordid>2187592130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3</originalsourceid><addsrcrecordid>eNptkE1LxDAURYMoOI6u_AMFl9LxvaZNMksZP2FEF7oOSZu0GaZNTVpk_r0dZsCNq8eFw72PQ8g1wgIB-Z3qwyIDFAuBJ2SGOS9SBiw_JTMAwFQwLs7JRYybKVIuYEYe3sbt4IZdbxIdVFc2rquTPvjSxGhi8uOGJnFd41tfm874MSYf3sXou8S1rauDGpzvLsmZVdtoro53Tr6eHj9XL-n6_fl1db9OS0rZkFqLWBiWCUaXClmeL3UpQFcKFFO5RW20yBFUxitNsRBWU8gqDbzKbSZ4Sefk5tA7Pfg9mjjIjR9DN03KDAUvlhlSmKjbA1UGH2MwVvbBtSrsJILca5KTJrnXJAVOdHqkVauDq2rzV_of_wuFM2qr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187592130</pqid></control><display><type>article</type><title>Multitype branching processes with inhomogeneous Poisson immigration</title><source>ABI/INFORM Global (ProQuest)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Cambridge University Press</source><creator>Mitov, Kosto V. ; Yanev, Nikolay M. ; Hyrien, Ollivier</creator><creatorcontrib>Mitov, Kosto V. ; Yanev, Nikolay M. ; Hyrien, Ollivier</creatorcontrib><description>In this paper we introduce multitype branching processes with inhomogeneous Poisson immigration, and consider in detail the critical Markov case when the local intensity r(t) of the Poisson random measure is a regularly varying function. Various multitype limit distributions (conditional and unconditional) are obtained depending on the rate at which r(t) changes with time. The asymptotic behaviour of the first and second moments, and the probability of nonextinction are investigated.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/apr.2018.81</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Asymptotic properties ; Branching (mathematics) ; Fractals ; Immigration ; Markov processes ; Original Article ; Poisson distribution ; Probability</subject><ispartof>Advances in applied probability, 2018-12, Vol.50 (A), p.211-228</ispartof><rights>Copyright © Applied Probability Trust 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3</citedby><cites>FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2187592130?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,72960</link.rule.ids></links><search><creatorcontrib>Mitov, Kosto V.</creatorcontrib><creatorcontrib>Yanev, Nikolay M.</creatorcontrib><creatorcontrib>Hyrien, Ollivier</creatorcontrib><title>Multitype branching processes with inhomogeneous Poisson immigration</title><title>Advances in applied probability</title><addtitle>Adv. Appl. Probab</addtitle><description>In this paper we introduce multitype branching processes with inhomogeneous Poisson immigration, and consider in detail the critical Markov case when the local intensity r(t) of the Poisson random measure is a regularly varying function. Various multitype limit distributions (conditional and unconditional) are obtained depending on the rate at which r(t) changes with time. The asymptotic behaviour of the first and second moments, and the probability of nonextinction are investigated.</description><subject>Asymptotic properties</subject><subject>Branching (mathematics)</subject><subject>Fractals</subject><subject>Immigration</subject><subject>Markov processes</subject><subject>Original Article</subject><subject>Poisson distribution</subject><subject>Probability</subject><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNptkE1LxDAURYMoOI6u_AMFl9LxvaZNMksZP2FEF7oOSZu0GaZNTVpk_r0dZsCNq8eFw72PQ8g1wgIB-Z3qwyIDFAuBJ2SGOS9SBiw_JTMAwFQwLs7JRYybKVIuYEYe3sbt4IZdbxIdVFc2rquTPvjSxGhi8uOGJnFd41tfm874MSYf3sXou8S1rauDGpzvLsmZVdtoro53Tr6eHj9XL-n6_fl1db9OS0rZkFqLWBiWCUaXClmeL3UpQFcKFFO5RW20yBFUxitNsRBWU8gqDbzKbSZ4Sefk5tA7Pfg9mjjIjR9DN03KDAUvlhlSmKjbA1UGH2MwVvbBtSrsJILca5KTJrnXJAVOdHqkVauDq2rzV_of_wuFM2qr</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Mitov, Kosto V.</creator><creator>Yanev, Nikolay M.</creator><creator>Hyrien, Ollivier</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>201812</creationdate><title>Multitype branching processes with inhomogeneous Poisson immigration</title><author>Mitov, Kosto V. ; Yanev, Nikolay M. ; Hyrien, Ollivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Branching (mathematics)</topic><topic>Fractals</topic><topic>Immigration</topic><topic>Markov processes</topic><topic>Original Article</topic><topic>Poisson distribution</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitov, Kosto V.</creatorcontrib><creatorcontrib>Yanev, Nikolay M.</creatorcontrib><creatorcontrib>Hyrien, Ollivier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest_Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitov, Kosto V.</au><au>Yanev, Nikolay M.</au><au>Hyrien, Ollivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitype branching processes with inhomogeneous Poisson immigration</atitle><jtitle>Advances in applied probability</jtitle><addtitle>Adv. Appl. Probab</addtitle><date>2018-12</date><risdate>2018</risdate><volume>50</volume><issue>A</issue><spage>211</spage><epage>228</epage><pages>211-228</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>In this paper we introduce multitype branching processes with inhomogeneous Poisson immigration, and consider in detail the critical Markov case when the local intensity r(t) of the Poisson random measure is a regularly varying function. Various multitype limit distributions (conditional and unconditional) are obtained depending on the rate at which r(t) changes with time. The asymptotic behaviour of the first and second moments, and the probability of nonextinction are investigated.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/apr.2018.81</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8678 |
ispartof | Advances in applied probability, 2018-12, Vol.50 (A), p.211-228 |
issn | 0001-8678 1475-6064 |
language | eng |
recordid | cdi_proquest_journals_2187592130 |
source | ABI/INFORM Global (ProQuest); JSTOR Archival Journals and Primary Sources Collection; Cambridge University Press |
subjects | Asymptotic properties Branching (mathematics) Fractals Immigration Markov processes Original Article Poisson distribution Probability |
title | Multitype branching processes with inhomogeneous Poisson immigration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitype%20branching%20processes%20with%20inhomogeneous%20Poisson%20immigration&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Mitov,%20Kosto%20V.&rft.date=2018-12&rft.volume=50&rft.issue=A&rft.spage=211&rft.epage=228&rft.pages=211-228&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/apr.2018.81&rft_dat=%3Cproquest_cross%3E2187592130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ff115e628639a16449bc80bda0a6a4f1beb8410a27db3158fb302db07d4f287c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2187592130&rft_id=info:pmid/&rft_cupid=10_1017_apr_2018_81&rfr_iscdi=true |