Loading…
Land-Use/Land-Cover Classification Using Elephant Herding Algorithm
In recent years, swarm intelligence algorithms such as particle swarm optimisation, ant colony optimisation, cuckoo search and artificial bee colony algorithm have shown promising results in multispectral image classification. Elephant herding algorithm is one of the newly emerging nature inspired a...
Saved in:
Published in: | Journal of the Indian Society of Remote Sensing 2019-02, Vol.47 (2), p.223-232 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In recent years, swarm intelligence algorithms such as particle swarm optimisation, ant colony optimisation, cuckoo search and artificial bee colony algorithm have shown promising results in multispectral image classification. Elephant herding algorithm is one of the newly emerging nature inspired algorithms which can analyse multispectral pixels and determine the information of class via fitness function. When the spectral resolution of the satellite imagery is increased, the higher within-class variability reduces the statistical separability between the LU/LC classes in spectral space and tends to continue diminishing classification accuracy of the traditional classifiers. These are mostly per pixel and parametric in nature. Experimental result has revealed that elephant herding algorithm shows an improvement of 10.7% on Arsikere taluk and 6.63% on NITK campus over support vector machine. |
---|---|
ISSN: | 0255-660X 0974-3006 |
DOI: | 10.1007/s12524-018-00935-x |