Loading…
Effect of the Prandtl number on the instabilities of the thermocapillary flow in an annular pool
This paper is devoted to the instability mechanisms of the thermocapillary flow in an annular pool. The stability limit of the axisymmetric basic state was studied over a wide range of Prandtl numbers (0.001 ≤ Pr ≤ 6.7) using linear stability analysis based on the spectral element method. The result...
Saved in:
Published in: | Physics of fluids (1994) 2019-03, Vol.31 (3) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is devoted to the instability mechanisms of the thermocapillary flow in an annular pool. The stability limit of the axisymmetric basic state was studied over a wide range of Prandtl numbers (0.001 ≤ Pr ≤ 6.7) using linear stability analysis based on the spectral element method. The results demonstrate five types of instabilities, and the corresponding instability mechanisms were revealed by disturbance energy analysis. In particular, in the narrow range 1.4 ≤ Pr ≤ 1.53, with the increase in the Marangoni number, three transitions between the axisymmetric steady flow and the three-dimensional oscillatory flow were found, owing to the coupling and interaction of the hydrodynamic and hydrothermal instability mechanisms. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.5087113 |