Loading…
Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective
Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of con...
Saved in:
Published in: | IEEE transactions on network science and engineering 2019-01, Vol.6 (1), p.31-45 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3 |
container_end_page | 45 |
container_issue | 1 |
container_start_page | 31 |
container_title | IEEE transactions on network science and engineering |
container_volume | 6 |
creator | Basaras, Pavlos Iosifidis, George Katsaros, Dimitrios Tassiulas, Leandros |
description | Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors. |
doi_str_mv | 10.1109/TNSE.2017.2775152 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188600625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8114211</ieee_id><sourcerecordid>2188600625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWLQ_QLwseE7dj2ST9VZC1UKtQiuIl2WzO5GtaRJ3EzX_3oQWTzMD7zPDPEFwRfCMECxut-vNYkYxSWY0SWIS05NgQhmLQkbF2-nY0ySMuEjOg6n3O4wxoSlnjE2C96WBqrVFb6sPtKyKshtHVaJN40AZcB7ZCmX1vinhFz11ZWtL1YNDa2h_avfp79AcZQPjVGnbHr0MRAO6td9wGZwVqvQwPdaL4PV-sc0ew9XzwzKbr0JNBWtDAyJKFDcKYs5zyhUznAnQKTYAOc0NLgQnNMqNoDomqsBMU00iPPyZ6Fyzi-DmsLdx9VcHvpW7unPVcFJSkqYcY07jIUUOKe1q7x0UsnF2r1wvCZajRTlalKNFebQ4MNcHxgLAfz4lJKKEsD9PzW8h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188600625</pqid></control><display><type>article</type><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</creator><creatorcontrib>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</creatorcontrib><description>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2017.2775152</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Centralities ; Cloning ; Complex networks ; epidemic spreading ; influential spreaders ; Knowledge engineering ; Knowledge management ; multilayer networks ; Multilayers ; Multiplexing ; Networks ; Nodes ; Nonhomogeneous media ; Social network services ; Spreaders</subject><ispartof>IEEE transactions on network science and engineering, 2019-01, Vol.6 (1), p.31-45</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</citedby><cites>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</cites><orcidid>0000-0003-3473-4187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8114211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Basaras, Pavlos</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Katsaros, Dimitrios</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</description><subject>Centralities</subject><subject>Cloning</subject><subject>Complex networks</subject><subject>epidemic spreading</subject><subject>influential spreaders</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>multilayer networks</subject><subject>Multilayers</subject><subject>Multiplexing</subject><subject>Networks</subject><subject>Nodes</subject><subject>Nonhomogeneous media</subject><subject>Social network services</subject><subject>Spreaders</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWLQ_QLwseE7dj2ST9VZC1UKtQiuIl2WzO5GtaRJ3EzX_3oQWTzMD7zPDPEFwRfCMECxut-vNYkYxSWY0SWIS05NgQhmLQkbF2-nY0ySMuEjOg6n3O4wxoSlnjE2C96WBqrVFb6sPtKyKshtHVaJN40AZcB7ZCmX1vinhFz11ZWtL1YNDa2h_avfp79AcZQPjVGnbHr0MRAO6td9wGZwVqvQwPdaL4PV-sc0ew9XzwzKbr0JNBWtDAyJKFDcKYs5zyhUznAnQKTYAOc0NLgQnNMqNoDomqsBMU00iPPyZ6Fyzi-DmsLdx9VcHvpW7unPVcFJSkqYcY07jIUUOKe1q7x0UsnF2r1wvCZajRTlalKNFebQ4MNcHxgLAfz4lJKKEsD9PzW8h</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Basaras, Pavlos</creator><creator>Iosifidis, George</creator><creator>Katsaros, Dimitrios</creator><creator>Tassiulas, Leandros</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3473-4187</orcidid></search><sort><creationdate>201901</creationdate><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><author>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Centralities</topic><topic>Cloning</topic><topic>Complex networks</topic><topic>epidemic spreading</topic><topic>influential spreaders</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>multilayer networks</topic><topic>Multilayers</topic><topic>Multiplexing</topic><topic>Networks</topic><topic>Nodes</topic><topic>Nonhomogeneous media</topic><topic>Social network services</topic><topic>Spreaders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basaras, Pavlos</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Katsaros, Dimitrios</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basaras, Pavlos</au><au>Iosifidis, George</au><au>Katsaros, Dimitrios</au><au>Tassiulas, Leandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2019-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>31</spage><epage>45</epage><pages>31-45</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2017.2775152</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3473-4187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4697 |
ispartof | IEEE transactions on network science and engineering, 2019-01, Vol.6 (1), p.31-45 |
issn | 2327-4697 2334-329X |
language | eng |
recordid | cdi_proquest_journals_2188600625 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Centralities Cloning Complex networks epidemic spreading influential spreaders Knowledge engineering Knowledge management multilayer networks Multilayers Multiplexing Networks Nodes Nonhomogeneous media Social network services Spreaders |
title | Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Influential%20Spreaders%20in%20Complex%20Multilayer%20Networks:%20A%20Centrality%20Perspective&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Basaras,%20Pavlos&rft.date=2019-01&rft.volume=6&rft.issue=1&rft.spage=31&rft.epage=45&rft.pages=31-45&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2017.2775152&rft_dat=%3Cproquest_cross%3E2188600625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2188600625&rft_id=info:pmid/&rft_ieee_id=8114211&rfr_iscdi=true |