Loading…

Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective

Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of con...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on network science and engineering 2019-01, Vol.6 (1), p.31-45
Main Authors: Basaras, Pavlos, Iosifidis, George, Katsaros, Dimitrios, Tassiulas, Leandros
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3
cites cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3
container_end_page 45
container_issue 1
container_start_page 31
container_title IEEE transactions on network science and engineering
container_volume 6
creator Basaras, Pavlos
Iosifidis, George
Katsaros, Dimitrios
Tassiulas, Leandros
description Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.
doi_str_mv 10.1109/TNSE.2017.2775152
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188600625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8114211</ieee_id><sourcerecordid>2188600625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWLQ_QLwseE7dj2ST9VZC1UKtQiuIl2WzO5GtaRJ3EzX_3oQWTzMD7zPDPEFwRfCMECxut-vNYkYxSWY0SWIS05NgQhmLQkbF2-nY0ySMuEjOg6n3O4wxoSlnjE2C96WBqrVFb6sPtKyKshtHVaJN40AZcB7ZCmX1vinhFz11ZWtL1YNDa2h_avfp79AcZQPjVGnbHr0MRAO6td9wGZwVqvQwPdaL4PV-sc0ew9XzwzKbr0JNBWtDAyJKFDcKYs5zyhUznAnQKTYAOc0NLgQnNMqNoDomqsBMU00iPPyZ6Fyzi-DmsLdx9VcHvpW7unPVcFJSkqYcY07jIUUOKe1q7x0UsnF2r1wvCZajRTlalKNFebQ4MNcHxgLAfz4lJKKEsD9PzW8h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188600625</pqid></control><display><type>article</type><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</creator><creatorcontrib>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</creatorcontrib><description>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2017.2775152</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Centralities ; Cloning ; Complex networks ; epidemic spreading ; influential spreaders ; Knowledge engineering ; Knowledge management ; multilayer networks ; Multilayers ; Multiplexing ; Networks ; Nodes ; Nonhomogeneous media ; Social network services ; Spreaders</subject><ispartof>IEEE transactions on network science and engineering, 2019-01, Vol.6 (1), p.31-45</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</citedby><cites>FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</cites><orcidid>0000-0003-3473-4187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8114211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Basaras, Pavlos</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Katsaros, Dimitrios</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</description><subject>Centralities</subject><subject>Cloning</subject><subject>Complex networks</subject><subject>epidemic spreading</subject><subject>influential spreaders</subject><subject>Knowledge engineering</subject><subject>Knowledge management</subject><subject>multilayer networks</subject><subject>Multilayers</subject><subject>Multiplexing</subject><subject>Networks</subject><subject>Nodes</subject><subject>Nonhomogeneous media</subject><subject>Social network services</subject><subject>Spreaders</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWLQ_QLwseE7dj2ST9VZC1UKtQiuIl2WzO5GtaRJ3EzX_3oQWTzMD7zPDPEFwRfCMECxut-vNYkYxSWY0SWIS05NgQhmLQkbF2-nY0ySMuEjOg6n3O4wxoSlnjE2C96WBqrVFb6sPtKyKshtHVaJN40AZcB7ZCmX1vinhFz11ZWtL1YNDa2h_avfp79AcZQPjVGnbHr0MRAO6td9wGZwVqvQwPdaL4PV-sc0ew9XzwzKbr0JNBWtDAyJKFDcKYs5zyhUznAnQKTYAOc0NLgQnNMqNoDomqsBMU00iPPyZ6Fyzi-DmsLdx9VcHvpW7unPVcFJSkqYcY07jIUUOKe1q7x0UsnF2r1wvCZajRTlalKNFebQ4MNcHxgLAfz4lJKKEsD9PzW8h</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Basaras, Pavlos</creator><creator>Iosifidis, George</creator><creator>Katsaros, Dimitrios</creator><creator>Tassiulas, Leandros</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3473-4187</orcidid></search><sort><creationdate>201901</creationdate><title>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</title><author>Basaras, Pavlos ; Iosifidis, George ; Katsaros, Dimitrios ; Tassiulas, Leandros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Centralities</topic><topic>Cloning</topic><topic>Complex networks</topic><topic>epidemic spreading</topic><topic>influential spreaders</topic><topic>Knowledge engineering</topic><topic>Knowledge management</topic><topic>multilayer networks</topic><topic>Multilayers</topic><topic>Multiplexing</topic><topic>Networks</topic><topic>Nodes</topic><topic>Nonhomogeneous media</topic><topic>Social network services</topic><topic>Spreaders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basaras, Pavlos</creatorcontrib><creatorcontrib>Iosifidis, George</creatorcontrib><creatorcontrib>Katsaros, Dimitrios</creatorcontrib><creatorcontrib>Tassiulas, Leandros</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basaras, Pavlos</au><au>Iosifidis, George</au><au>Katsaros, Dimitrios</au><au>Tassiulas, Leandros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2019-01</date><risdate>2019</risdate><volume>6</volume><issue>1</issue><spage>31</spage><epage>45</epage><pages>31-45</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>Identifying influential spreaders in complex networks is of paramount importance for understanding and controlling the spreading dynamics. A challenging and yet inadequately explored task is to detect such influential nodes in multilayer networks, i.e., networks that encompass different types of connections (e.g., different relationships) among the nodes, hence facilitating a multilayer structure. Our purpose is to devise a method that can accurately detect nodes able to exert strong influence over the multilayer network; the method will be based solely on local knowledge of a network's topology in order to be fast and scalable due to the huge size of the network, and thus suitable for both real-time applications and offline mining. Based on our belief that a strong influencer is a node positioned in a well-connected neighborhood, we propose a series of methods which capture in a single number the rich inter- and intra-layer connectivity of the node. Our simulations showed that the proposed measures can detect effective spreaders in both real and synthetic networks, under various settings and against various competitors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2017.2775152</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3473-4187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2019-01, Vol.6 (1), p.31-45
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2188600625
source IEEE Electronic Library (IEL) Journals
subjects Centralities
Cloning
Complex networks
epidemic spreading
influential spreaders
Knowledge engineering
Knowledge management
multilayer networks
Multilayers
Multiplexing
Networks
Nodes
Nonhomogeneous media
Social network services
Spreaders
title Identifying Influential Spreaders in Complex Multilayer Networks: A Centrality Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Influential%20Spreaders%20in%20Complex%20Multilayer%20Networks:%20A%20Centrality%20Perspective&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Basaras,%20Pavlos&rft.date=2019-01&rft.volume=6&rft.issue=1&rft.spage=31&rft.epage=45&rft.pages=31-45&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2017.2775152&rft_dat=%3Cproquest_cross%3E2188600625%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-de947a6dae566b26a3d639ec80deeb2bd0f96124bd92c51af03c2c1401527cbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2188600625&rft_id=info:pmid/&rft_ieee_id=8114211&rfr_iscdi=true