Loading…

Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields

We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical physics 2019-03, Vol.174 (5), p.1038-1079
Main Author: Hongo, Masaru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03
cites cdi_FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03
container_end_page 1079
container_issue 5
container_start_page 1038
container_title Journal of statistical physics
container_volume 174
creator Hongo, Masaru
description We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.
doi_str_mv 10.1007/s10955-019-02224-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189042944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189042944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXAG72oJmmyNt7JcG4wJrJ5HdI0cRltU5NW6Iv5Ar6YrRW88-rA4fv_w_kAuMToFiOU3AWMOGMRwjxChBAa0SMwwSwhEZ_h-BhMUL-OaILZKTgL4YAQ4ilnE-A3rvK6kI39sKGxCi673Lu8q2RpVYDGuxK-tLJq2hIurC5yuNtr57t7eL26gRvnS1nARdHaHM5dWbugc-gM3Na2KnQIcKv2_uszt9Wb9mNBOAcnRhZBX_zOKXhdPO7my2j9_LSaP6wjRQlvImZYliqdmcQoRTHl2FCpc8JpjHhGMhTzFGuiqJQkm2FjMIt1MtBsluEcxVNwNfbW3r23OjTi4Fpf9ScFwSlH_RVKe4qMlPIuBK-NqL0tpe8ERmJwK0a3oncrftyKIRSPodDDw2t_1f-kvgGXnn5y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189042944</pqid></control><display><type>article</type><title>Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields</title><source>Springer Nature</source><creator>Hongo, Masaru</creator><creatorcontrib>Hongo, Masaru</creatorcontrib><description>We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-019-02224-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computational fluid dynamics ; Constitutive relationships ; Field theory ; Fluid flow ; Formulas (mathematics) ; Hydrodynamic equations ; Hydrodynamics ; Isomorphism ; Mathematical and Computational Physics ; Operators (mathematics) ; Perturbation theory ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum field theory ; Quantum Physics ; Quantum theory ; Statistical Physics and Dynamical Systems ; Symmetry ; Theoretical ; Thermodynamics ; Transport properties ; Variation</subject><ispartof>Journal of statistical physics, 2019-03, Vol.174 (5), p.1038-1079</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03</citedby><cites>FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03</cites><orcidid>0000-0002-9458-4347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hongo, Masaru</creatorcontrib><title>Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.</description><subject>Computational fluid dynamics</subject><subject>Constitutive relationships</subject><subject>Field theory</subject><subject>Fluid flow</subject><subject>Formulas (mathematics)</subject><subject>Hydrodynamic equations</subject><subject>Hydrodynamics</subject><subject>Isomorphism</subject><subject>Mathematical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Perturbation theory</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum field theory</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thermodynamics</subject><subject>Transport properties</subject><subject>Variation</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhoMoOKcv4FXAG72oJmmyNt7JcG4wJrJ5HdI0cRltU5NW6Iv5Ar6YrRW88-rA4fv_w_kAuMToFiOU3AWMOGMRwjxChBAa0SMwwSwhEZ_h-BhMUL-OaILZKTgL4YAQ4ilnE-A3rvK6kI39sKGxCi673Lu8q2RpVYDGuxK-tLJq2hIurC5yuNtr57t7eL26gRvnS1nARdHaHM5dWbugc-gM3Na2KnQIcKv2_uszt9Wb9mNBOAcnRhZBX_zOKXhdPO7my2j9_LSaP6wjRQlvImZYliqdmcQoRTHl2FCpc8JpjHhGMhTzFGuiqJQkm2FjMIt1MtBsluEcxVNwNfbW3r23OjTi4Fpf9ScFwSlH_RVKe4qMlPIuBK-NqL0tpe8ERmJwK0a3oncrftyKIRSPodDDw2t_1f-kvgGXnn5y</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Hongo, Masaru</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9458-4347</orcidid></search><sort><creationdate>20190315</creationdate><title>Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields</title><author>Hongo, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Constitutive relationships</topic><topic>Field theory</topic><topic>Fluid flow</topic><topic>Formulas (mathematics)</topic><topic>Hydrodynamic equations</topic><topic>Hydrodynamics</topic><topic>Isomorphism</topic><topic>Mathematical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Perturbation theory</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum field theory</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thermodynamics</topic><topic>Transport properties</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongo, Masaru</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongo, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2019-03-15</date><risdate>2019</risdate><volume>174</volume><issue>5</issue><spage>1038</spage><epage>1079</epage><pages>1038-1079</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-019-02224-4</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-9458-4347</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2019-03, Vol.174 (5), p.1038-1079
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2189042944
source Springer Nature
subjects Computational fluid dynamics
Constitutive relationships
Field theory
Fluid flow
Formulas (mathematics)
Hydrodynamic equations
Hydrodynamics
Isomorphism
Mathematical and Computational Physics
Operators (mathematics)
Perturbation theory
Physical Chemistry
Physics
Physics and Astronomy
Quantum field theory
Quantum Physics
Quantum theory
Statistical Physics and Dynamical Systems
Symmetry
Theoretical
Thermodynamics
Transport properties
Variation
title Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T15%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonrelativistic%20Hydrodynamics%20from%20Quantum%20Field%20Theory:%20(I)%20Normal%20Fluid%20Composed%20of%20Spinless%20Schr%C3%B6dinger%20Fields&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Hongo,%20Masaru&rft.date=2019-03-15&rft.volume=174&rft.issue=5&rft.spage=1038&rft.epage=1079&rft.pages=1038-1079&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-019-02224-4&rft_dat=%3Cproquest_cross%3E2189042944%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-5f5b8cebf7fcc41491f4aed294309b2b03981e2c4aa2b61ff153e7f7fc56b1d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2189042944&rft_id=info:pmid/&rfr_iscdi=true