Loading…

Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic

A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2019-04, Vol.445, p.64-76
Main Authors: Pérez Arroyo, Carlos, Leonard, Thomas, Sanjosé, Marlène, Moreau, Stéphane, Duchaine, Florent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413
cites cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413
container_end_page 76
container_issue
container_start_page 64
container_title Journal of sound and vibration
container_volume 445
creator Pérez Arroyo, Carlos
Leonard, Thomas
Sanjosé, Marlène
Moreau, Stéphane
Duchaine, Florent
description A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams & Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.
doi_str_mv 10.1016/j.jsv.2019.01.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190067149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X19300112</els_id><sourcerecordid>2190067149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsfwFvA864vu0m6wZOU-gcKPajgLaTZl5Kl3dRkt9Bvb0o9e5p3mJk3_Ai5Z1AyYPKxK7t0KCtgqgRWAogLMmGgRNEI2VySCUBVFVzC9zW5SakDAMVrPiGrpYkbpIu2PdIPvxu3ZvChp8FRQ5M1Wyx2ocUtHca4Ds701IVIT9oHn5CmMEaLtPVm04c0eHtLrpzZJrz70yn5ell8zt-K5er1ff68LGwtm6GoW6ilZdBIrBrX8pkVLt8zK52QUjWIay4MOuagUQ1Yo4S1UmCNlXKcs3pKHs69-xh-RkyD7vKUPr_UFVMAcsa4yi52dtkYUoro9D76nYlHzUCfuOlOZ276xE0D05lbzjydM5jnHzxGnazH3mLrI9pBt8H_k_4FaSJ1gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190067149</pqid></control><display><type>article</type><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><source>ScienceDirect Freedom Collection</source><creator>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</creator><creatorcontrib>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</creatorcontrib><description>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams &amp; Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2019.01.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic analogy ; Acoustic noise ; Acoustics ; Aeroacoustic ; Aerodynamics ; Boundary layer transition ; Broadband ; Computational fluid dynamics ; Computer simulation ; Diagnostic systems ; Fan stage ; Frequencies ; Impingement ; Large eddy simulation ; Navier-Stokes equations ; Reynolds averaged Navier-Stokes method ; Secondary flow ; Simulation ; Stators ; Suction ; Turbofans ; Turbomachinery ; Turbulence ; Turbulent flow ; Vanes ; Vibration ; Vortices</subject><ispartof>Journal of sound and vibration, 2019-04, Vol.445, p.64-76</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 14, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</citedby><cites>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez Arroyo, Carlos</creatorcontrib><creatorcontrib>Leonard, Thomas</creatorcontrib><creatorcontrib>Sanjosé, Marlène</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><creatorcontrib>Duchaine, Florent</creatorcontrib><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><title>Journal of sound and vibration</title><description>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams &amp; Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</description><subject>Acoustic analogy</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Aeroacoustic</subject><subject>Aerodynamics</subject><subject>Boundary layer transition</subject><subject>Broadband</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Fan stage</subject><subject>Frequencies</subject><subject>Impingement</subject><subject>Large eddy simulation</subject><subject>Navier-Stokes equations</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Stators</subject><subject>Suction</subject><subject>Turbofans</subject><subject>Turbomachinery</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vanes</subject><subject>Vibration</subject><subject>Vortices</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsfwFvA864vu0m6wZOU-gcKPajgLaTZl5Kl3dRkt9Bvb0o9e5p3mJk3_Ai5Z1AyYPKxK7t0KCtgqgRWAogLMmGgRNEI2VySCUBVFVzC9zW5SakDAMVrPiGrpYkbpIu2PdIPvxu3ZvChp8FRQ5M1Wyx2ocUtHca4Ds701IVIT9oHn5CmMEaLtPVm04c0eHtLrpzZJrz70yn5ell8zt-K5er1ff68LGwtm6GoW6ilZdBIrBrX8pkVLt8zK52QUjWIay4MOuagUQ1Yo4S1UmCNlXKcs3pKHs69-xh-RkyD7vKUPr_UFVMAcsa4yi52dtkYUoro9D76nYlHzUCfuOlOZ276xE0D05lbzjydM5jnHzxGnazH3mLrI9pBt8H_k_4FaSJ1gg</recordid><startdate>20190414</startdate><enddate>20190414</enddate><creator>Pérez Arroyo, Carlos</creator><creator>Leonard, Thomas</creator><creator>Sanjosé, Marlène</creator><creator>Moreau, Stéphane</creator><creator>Duchaine, Florent</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190414</creationdate><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><author>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic analogy</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Aeroacoustic</topic><topic>Aerodynamics</topic><topic>Boundary layer transition</topic><topic>Broadband</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Fan stage</topic><topic>Frequencies</topic><topic>Impingement</topic><topic>Large eddy simulation</topic><topic>Navier-Stokes equations</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Stators</topic><topic>Suction</topic><topic>Turbofans</topic><topic>Turbomachinery</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vanes</topic><topic>Vibration</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez Arroyo, Carlos</creatorcontrib><creatorcontrib>Leonard, Thomas</creatorcontrib><creatorcontrib>Sanjosé, Marlène</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><creatorcontrib>Duchaine, Florent</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez Arroyo, Carlos</au><au>Leonard, Thomas</au><au>Sanjosé, Marlène</au><au>Moreau, Stéphane</au><au>Duchaine, Florent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</atitle><jtitle>Journal of sound and vibration</jtitle><date>2019-04-14</date><risdate>2019</risdate><volume>445</volume><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams &amp; Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2019.01.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2019-04, Vol.445, p.64-76
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_journals_2190067149
source ScienceDirect Freedom Collection
subjects Acoustic analogy
Acoustic noise
Acoustics
Aeroacoustic
Aerodynamics
Boundary layer transition
Broadband
Computational fluid dynamics
Computer simulation
Diagnostic systems
Fan stage
Frequencies
Impingement
Large eddy simulation
Navier-Stokes equations
Reynolds averaged Navier-Stokes method
Secondary flow
Simulation
Stators
Suction
Turbofans
Turbomachinery
Turbulence
Turbulent flow
Vanes
Vibration
Vortices
title Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Eddy%20Simulation%20of%20a%20scale-model%20turbofan%20for%20fan%20noise%20source%20diagnostic&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=P%C3%A9rez%20Arroyo,%20Carlos&rft.date=2019-04-14&rft.volume=445&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2019.01.005&rft_dat=%3Cproquest_cross%3E2190067149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190067149&rft_id=info:pmid/&rfr_iscdi=true