Loading…
Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic
A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results...
Saved in:
Published in: | Journal of sound and vibration 2019-04, Vol.445, p.64-76 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413 |
container_end_page | 76 |
container_issue | |
container_start_page | 64 |
container_title | Journal of sound and vibration |
container_volume | 445 |
creator | Pérez Arroyo, Carlos Leonard, Thomas Sanjosé, Marlène Moreau, Stéphane Duchaine, Florent |
description | A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams & Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies. |
doi_str_mv | 10.1016/j.jsv.2019.01.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190067149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X19300112</els_id><sourcerecordid>2190067149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsfwFvA864vu0m6wZOU-gcKPajgLaTZl5Kl3dRkt9Bvb0o9e5p3mJk3_Ai5Z1AyYPKxK7t0KCtgqgRWAogLMmGgRNEI2VySCUBVFVzC9zW5SakDAMVrPiGrpYkbpIu2PdIPvxu3ZvChp8FRQ5M1Wyx2ocUtHca4Ds701IVIT9oHn5CmMEaLtPVm04c0eHtLrpzZJrz70yn5ell8zt-K5er1ff68LGwtm6GoW6ilZdBIrBrX8pkVLt8zK52QUjWIay4MOuagUQ1Yo4S1UmCNlXKcs3pKHs69-xh-RkyD7vKUPr_UFVMAcsa4yi52dtkYUoro9D76nYlHzUCfuOlOZ276xE0D05lbzjydM5jnHzxGnazH3mLrI9pBt8H_k_4FaSJ1gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190067149</pqid></control><display><type>article</type><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><source>ScienceDirect Freedom Collection</source><creator>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</creator><creatorcontrib>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</creatorcontrib><description>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams & Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2019.01.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic analogy ; Acoustic noise ; Acoustics ; Aeroacoustic ; Aerodynamics ; Boundary layer transition ; Broadband ; Computational fluid dynamics ; Computer simulation ; Diagnostic systems ; Fan stage ; Frequencies ; Impingement ; Large eddy simulation ; Navier-Stokes equations ; Reynolds averaged Navier-Stokes method ; Secondary flow ; Simulation ; Stators ; Suction ; Turbofans ; Turbomachinery ; Turbulence ; Turbulent flow ; Vanes ; Vibration ; Vortices</subject><ispartof>Journal of sound and vibration, 2019-04, Vol.445, p.64-76</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 14, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</citedby><cites>FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pérez Arroyo, Carlos</creatorcontrib><creatorcontrib>Leonard, Thomas</creatorcontrib><creatorcontrib>Sanjosé, Marlène</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><creatorcontrib>Duchaine, Florent</creatorcontrib><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><title>Journal of sound and vibration</title><description>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams & Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</description><subject>Acoustic analogy</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Aeroacoustic</subject><subject>Aerodynamics</subject><subject>Boundary layer transition</subject><subject>Broadband</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Diagnostic systems</subject><subject>Fan stage</subject><subject>Frequencies</subject><subject>Impingement</subject><subject>Large eddy simulation</subject><subject>Navier-Stokes equations</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Secondary flow</subject><subject>Simulation</subject><subject>Stators</subject><subject>Suction</subject><subject>Turbofans</subject><subject>Turbomachinery</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vanes</subject><subject>Vibration</subject><subject>Vortices</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKsfwFvA864vu0m6wZOU-gcKPajgLaTZl5Kl3dRkt9Bvb0o9e5p3mJk3_Ai5Z1AyYPKxK7t0KCtgqgRWAogLMmGgRNEI2VySCUBVFVzC9zW5SakDAMVrPiGrpYkbpIu2PdIPvxu3ZvChp8FRQ5M1Wyx2ocUtHca4Ds701IVIT9oHn5CmMEaLtPVm04c0eHtLrpzZJrz70yn5ell8zt-K5er1ff68LGwtm6GoW6ilZdBIrBrX8pkVLt8zK52QUjWIay4MOuagUQ1Yo4S1UmCNlXKcs3pKHs69-xh-RkyD7vKUPr_UFVMAcsa4yi52dtkYUoro9D76nYlHzUCfuOlOZ276xE0D05lbzjydM5jnHzxGnazH3mLrI9pBt8H_k_4FaSJ1gg</recordid><startdate>20190414</startdate><enddate>20190414</enddate><creator>Pérez Arroyo, Carlos</creator><creator>Leonard, Thomas</creator><creator>Sanjosé, Marlène</creator><creator>Moreau, Stéphane</creator><creator>Duchaine, Florent</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190414</creationdate><title>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</title><author>Pérez Arroyo, Carlos ; Leonard, Thomas ; Sanjosé, Marlène ; Moreau, Stéphane ; Duchaine, Florent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic analogy</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Aeroacoustic</topic><topic>Aerodynamics</topic><topic>Boundary layer transition</topic><topic>Broadband</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Diagnostic systems</topic><topic>Fan stage</topic><topic>Frequencies</topic><topic>Impingement</topic><topic>Large eddy simulation</topic><topic>Navier-Stokes equations</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Secondary flow</topic><topic>Simulation</topic><topic>Stators</topic><topic>Suction</topic><topic>Turbofans</topic><topic>Turbomachinery</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vanes</topic><topic>Vibration</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez Arroyo, Carlos</creatorcontrib><creatorcontrib>Leonard, Thomas</creatorcontrib><creatorcontrib>Sanjosé, Marlène</creatorcontrib><creatorcontrib>Moreau, Stéphane</creatorcontrib><creatorcontrib>Duchaine, Florent</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez Arroyo, Carlos</au><au>Leonard, Thomas</au><au>Sanjosé, Marlène</au><au>Moreau, Stéphane</au><au>Duchaine, Florent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic</atitle><jtitle>Journal of sound and vibration</jtitle><date>2019-04-14</date><risdate>2019</risdate><volume>445</volume><spage>64</spage><epage>76</epage><pages>64-76</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>A wall-modeled statistically converged Large Eddy Simulation (LES) of the turbulent flow in the NASA Source Diagnostic Test turbofan has been successfully performed for the first time. A good agreement with aerodynamic measurements is observed for both Reynolds Averaged Navier-Stokes and LES results, although the LES provides better results in the tip regions where large coherent structures appear and no flow separation on the stator vanes is observed. In the LES the boundary layer naturally transition to turbulence on the blade suction side but remains quasi laminar over most of its pressure side. The rotor-wake turbulence yielding the stage broadband noise is then seen to be quasi isotropic. Transition on the downstream stator vanes is not triggered by the wake impingement but rather occurs at mid-chord. Finally, acoustics are investigated using both Ffowcs Williams & Hawkings' and Goldstein's analogies from the recorded LES noise source on the stator vanes. The latter analogy provides levels closer to the measurements especially at high frequencies, although the results are most likely still influenced by too coherent rotor tip secondary flow at low frequencies.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2019.01.005</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2019-04, Vol.445, p.64-76 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2190067149 |
source | ScienceDirect Freedom Collection |
subjects | Acoustic analogy Acoustic noise Acoustics Aeroacoustic Aerodynamics Boundary layer transition Broadband Computational fluid dynamics Computer simulation Diagnostic systems Fan stage Frequencies Impingement Large eddy simulation Navier-Stokes equations Reynolds averaged Navier-Stokes method Secondary flow Simulation Stators Suction Turbofans Turbomachinery Turbulence Turbulent flow Vanes Vibration Vortices |
title | Large Eddy Simulation of a scale-model turbofan for fan noise source diagnostic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Eddy%20Simulation%20of%20a%20scale-model%20turbofan%20for%20fan%20noise%20source%20diagnostic&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=P%C3%A9rez%20Arroyo,%20Carlos&rft.date=2019-04-14&rft.volume=445&rft.spage=64&rft.epage=76&rft.pages=64-76&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2019.01.005&rft_dat=%3Cproquest_cross%3E2190067149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-3d036c1086e28fd47c5f86e7c6f56698eeb45aef1f08980ca95cc65e3e29f4413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190067149&rft_id=info:pmid/&rfr_iscdi=true |