Loading…
Tools for designing atom interferometers in a microgravity environment
We present a variational model suitable for rapid preliminary design of atom interferometers in a microgravity environment. The model approximates the solution of the 3D rotating--frame Gross--Pitaevskii equation (GPE) as the sum of Nc Gaussian clouds. Each Gaussian cloud is assumed to have time--de...
Saved in:
Published in: | arXiv.org 2019-03 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ashwood, Elizabeth Wells, Ed Wesley Kurkcuoglu, Doga Murat Robert Colson Sapp Clark, Charles W Edwards, Mark |
description | We present a variational model suitable for rapid preliminary design of atom interferometers in a microgravity environment. The model approximates the solution of the 3D rotating--frame Gross--Pitaevskii equation (GPE) as the sum of Nc Gaussian clouds. Each Gaussian cloud is assumed to have time--dependent center positions, widths, and linear and quadratic phase parameters. We applied the Lagrangian Variational Method (LVM) with this trial wave function to derive equations of motion for these parameters that can be adapted to any external potential. We also present a 1D version of this variational model. As an example we apply the model to a 1D atom interferometry scheme for measuring Newton's gravitational constant, G, in a microgravity environment. We show how the LVM model can (1) constrain the experimental parameter space size, (2) show how the value of G can be obtained from the experimental conditions and interference pattern characteristics, and (3) show how to improve the sensitivity of the measurement and construct a preliminary error budget. |
doi_str_mv | 10.48550/arxiv.1903.04028 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2190260158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190260158</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-f82e2c7aa73db065608ed455030d933d0c4079c9ff4bd563a4eae1f68e5c6ebf3</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMguKz7A7wFPLe--Wx6lMVVYcFL70vavClZtokm3aL_3oKeZubyzAwhDwxqaZSCJ5u_w1KzFkQNEri5IRsuBKuM5PyO7Eo5AwDXDVdKbMihS-lSqE-ZOixhjCGO1M5poiHOmD3mNOFqypqppVMYchqzXcL8QzEuIac4YZzvya23l4K7f92S7vDS7d-q48fr-_75WFnFTeUNRz401jbC9aCVBoNOrqMFuFYIB4OEph1a72XvlBZWokXmtUE1aOy92JLHP-xnTl9XLPPpnK45ro0nvj7mGpgy4hcqQk5X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190260158</pqid></control><display><type>article</type><title>Tools for designing atom interferometers in a microgravity environment</title><source>Publicly Available Content (ProQuest)</source><creator>Ashwood, Elizabeth ; Wells, Ed Wesley ; Kurkcuoglu, Doga Murat ; Robert Colson Sapp ; Clark, Charles W ; Edwards, Mark</creator><creatorcontrib>Ashwood, Elizabeth ; Wells, Ed Wesley ; Kurkcuoglu, Doga Murat ; Robert Colson Sapp ; Clark, Charles W ; Edwards, Mark</creatorcontrib><description>We present a variational model suitable for rapid preliminary design of atom interferometers in a microgravity environment. The model approximates the solution of the 3D rotating--frame Gross--Pitaevskii equation (GPE) as the sum of Nc Gaussian clouds. Each Gaussian cloud is assumed to have time--dependent center positions, widths, and linear and quadratic phase parameters. We applied the Lagrangian Variational Method (LVM) with this trial wave function to derive equations of motion for these parameters that can be adapted to any external potential. We also present a 1D version of this variational model. As an example we apply the model to a 1D atom interferometry scheme for measuring Newton's gravitational constant, G, in a microgravity environment. We show how the LVM model can (1) constrain the experimental parameter space size, (2) show how the value of G can be obtained from the experimental conditions and interference pattern characteristics, and (3) show how to improve the sensitivity of the measurement and construct a preliminary error budget.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1903.04028</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atom interferometry ; Equations of motion ; Error analysis ; Error detection ; Gravitational constant ; Interferometers ; Mathematical models ; Microgravity ; Multinational space ventures ; Parameters ; Preliminary designs ; Three dimensional models ; Time dependence</subject><ispartof>arXiv.org, 2019-03</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2190260158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ashwood, Elizabeth</creatorcontrib><creatorcontrib>Wells, Ed Wesley</creatorcontrib><creatorcontrib>Kurkcuoglu, Doga Murat</creatorcontrib><creatorcontrib>Robert Colson Sapp</creatorcontrib><creatorcontrib>Clark, Charles W</creatorcontrib><creatorcontrib>Edwards, Mark</creatorcontrib><title>Tools for designing atom interferometers in a microgravity environment</title><title>arXiv.org</title><description>We present a variational model suitable for rapid preliminary design of atom interferometers in a microgravity environment. The model approximates the solution of the 3D rotating--frame Gross--Pitaevskii equation (GPE) as the sum of Nc Gaussian clouds. Each Gaussian cloud is assumed to have time--dependent center positions, widths, and linear and quadratic phase parameters. We applied the Lagrangian Variational Method (LVM) with this trial wave function to derive equations of motion for these parameters that can be adapted to any external potential. We also present a 1D version of this variational model. As an example we apply the model to a 1D atom interferometry scheme for measuring Newton's gravitational constant, G, in a microgravity environment. We show how the LVM model can (1) constrain the experimental parameter space size, (2) show how the value of G can be obtained from the experimental conditions and interference pattern characteristics, and (3) show how to improve the sensitivity of the measurement and construct a preliminary error budget.</description><subject>Atom interferometry</subject><subject>Equations of motion</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Gravitational constant</subject><subject>Interferometers</subject><subject>Mathematical models</subject><subject>Microgravity</subject><subject>Multinational space ventures</subject><subject>Parameters</subject><subject>Preliminary designs</subject><subject>Three dimensional models</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LxDAYhIMguKz7A7wFPLe--Wx6lMVVYcFL70vavClZtokm3aL_3oKeZubyzAwhDwxqaZSCJ5u_w1KzFkQNEri5IRsuBKuM5PyO7Eo5AwDXDVdKbMihS-lSqE-ZOixhjCGO1M5poiHOmD3mNOFqypqppVMYchqzXcL8QzEuIac4YZzvya23l4K7f92S7vDS7d-q48fr-_75WFnFTeUNRz401jbC9aCVBoNOrqMFuFYIB4OEph1a72XvlBZWokXmtUE1aOy92JLHP-xnTl9XLPPpnK45ro0nvj7mGpgy4hcqQk5X</recordid><startdate>20190310</startdate><enddate>20190310</enddate><creator>Ashwood, Elizabeth</creator><creator>Wells, Ed Wesley</creator><creator>Kurkcuoglu, Doga Murat</creator><creator>Robert Colson Sapp</creator><creator>Clark, Charles W</creator><creator>Edwards, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190310</creationdate><title>Tools for designing atom interferometers in a microgravity environment</title><author>Ashwood, Elizabeth ; Wells, Ed Wesley ; Kurkcuoglu, Doga Murat ; Robert Colson Sapp ; Clark, Charles W ; Edwards, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-f82e2c7aa73db065608ed455030d933d0c4079c9ff4bd563a4eae1f68e5c6ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atom interferometry</topic><topic>Equations of motion</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Gravitational constant</topic><topic>Interferometers</topic><topic>Mathematical models</topic><topic>Microgravity</topic><topic>Multinational space ventures</topic><topic>Parameters</topic><topic>Preliminary designs</topic><topic>Three dimensional models</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Ashwood, Elizabeth</creatorcontrib><creatorcontrib>Wells, Ed Wesley</creatorcontrib><creatorcontrib>Kurkcuoglu, Doga Murat</creatorcontrib><creatorcontrib>Robert Colson Sapp</creatorcontrib><creatorcontrib>Clark, Charles W</creatorcontrib><creatorcontrib>Edwards, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashwood, Elizabeth</au><au>Wells, Ed Wesley</au><au>Kurkcuoglu, Doga Murat</au><au>Robert Colson Sapp</au><au>Clark, Charles W</au><au>Edwards, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tools for designing atom interferometers in a microgravity environment</atitle><jtitle>arXiv.org</jtitle><date>2019-03-10</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>We present a variational model suitable for rapid preliminary design of atom interferometers in a microgravity environment. The model approximates the solution of the 3D rotating--frame Gross--Pitaevskii equation (GPE) as the sum of Nc Gaussian clouds. Each Gaussian cloud is assumed to have time--dependent center positions, widths, and linear and quadratic phase parameters. We applied the Lagrangian Variational Method (LVM) with this trial wave function to derive equations of motion for these parameters that can be adapted to any external potential. We also present a 1D version of this variational model. As an example we apply the model to a 1D atom interferometry scheme for measuring Newton's gravitational constant, G, in a microgravity environment. We show how the LVM model can (1) constrain the experimental parameter space size, (2) show how the value of G can be obtained from the experimental conditions and interference pattern characteristics, and (3) show how to improve the sensitivity of the measurement and construct a preliminary error budget.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1903.04028</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2190260158 |
source | Publicly Available Content (ProQuest) |
subjects | Atom interferometry Equations of motion Error analysis Error detection Gravitational constant Interferometers Mathematical models Microgravity Multinational space ventures Parameters Preliminary designs Three dimensional models Time dependence |
title | Tools for designing atom interferometers in a microgravity environment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A48%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tools%20for%20designing%20atom%20interferometers%20in%20a%20microgravity%20environment&rft.jtitle=arXiv.org&rft.au=Ashwood,%20Elizabeth&rft.date=2019-03-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1903.04028&rft_dat=%3Cproquest%3E2190260158%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-f82e2c7aa73db065608ed455030d933d0c4079c9ff4bd563a4eae1f68e5c6ebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190260158&rft_id=info:pmid/&rfr_iscdi=true |