Loading…
Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes
AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being th...
Saved in:
Published in: | Journal of environmental engineering (New York, N.Y.) N.Y.), 2019-05, Vol.145 (5) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63 |
---|---|
cites | cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63 |
container_end_page | |
container_issue | 5 |
container_start_page | |
container_title | Journal of environmental engineering (New York, N.Y.) |
container_volume | 145 |
creator | Mengelizadeh, Nezamaddin Pourzamani, Hamidreza Saloot, Morteza Khodadadi Hajizadeh, Yaghoub Parseh, Iman Parastar, Saeed Niknam, Noureddin |
description | AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25 mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200 mg/L), and RB5 concentration (25–100 mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200 mg/L, current density 15 mA/cm2, RB5 concentration 100 mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids. |
doi_str_mv | 10.1061/(ASCE)EE.1943-7870.0001517 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190304729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190304729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhhdRsB7eYdEbvUjdU7KJdzbGA3gAW6-XyWaq0bSpu6nSex_cLa0KglfDDP_3M3yEHHDW5yzhJ0dnw7w4Loo-z5SMdKpZnzHGY643SO_ntkl6TEsZZVKLbbLj_UvIqCTTPfJZNGg719pnnNQWGnqOTw4q6Op2StsxfUCwXf2OdNCAfaUxffT19ImOnh1idF5PcOpDMnB_e4YL3-GEDsBjRUPX7bzp6g9omrDm4MpwuoNp281L9HtkawyNx_313CWPF8Uov4pu7i-v87ObCKRWXcQzqyARFUuErLDSNpWlxbgSmVIpr2CcsLiMEytSrUBoLrhK4zSGqtQyKzGRu-Rw1Ttz7dscfWde2rkL33sjeMYkU1pkIXW6SlnXeu9wbGaunoBbGM7M0roxS-umKMzSsFkaNmvrAU5WMHiLv_Xf5P_gF5hHh3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190304729</pqid></control><display><type>article</type><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><source>ASCE library</source><creator>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</creator><creatorcontrib>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</creatorcontrib><description>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25 mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200 mg/L), and RB5 concentration (25–100 mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200 mg/L, current density 15 mA/cm2, RB5 concentration 100 mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)EE.1943-7870.0001517</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Aromatic compounds ; Chemical oxygen demand ; CI Reactive Black 5 ; Current density ; Degradation ; Electrochemistry ; Energy consumption ; Free radicals ; Hydrogen peroxide ; Microelectrodes ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Optimization ; Organic chemistry ; pH effects ; Reaction time ; Taguchi methods ; Technical Papers</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2019-05, Vol.145 (5)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</citedby><cites>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EE.1943-7870.0001517$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0001517$$EHTML$$P50$$Gasce$$H</linktohtml></links><search><creatorcontrib>Mengelizadeh, Nezamaddin</creatorcontrib><creatorcontrib>Pourzamani, Hamidreza</creatorcontrib><creatorcontrib>Saloot, Morteza Khodadadi</creatorcontrib><creatorcontrib>Hajizadeh, Yaghoub</creatorcontrib><creatorcontrib>Parseh, Iman</creatorcontrib><creatorcontrib>Parastar, Saeed</creatorcontrib><creatorcontrib>Niknam, Noureddin</creatorcontrib><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25 mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200 mg/L), and RB5 concentration (25–100 mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200 mg/L, current density 15 mA/cm2, RB5 concentration 100 mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</description><subject>Aromatic compounds</subject><subject>Chemical oxygen demand</subject><subject>CI Reactive Black 5</subject><subject>Current density</subject><subject>Degradation</subject><subject>Electrochemistry</subject><subject>Energy consumption</subject><subject>Free radicals</subject><subject>Hydrogen peroxide</subject><subject>Microelectrodes</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>pH effects</subject><subject>Reaction time</subject><subject>Taguchi methods</subject><subject>Technical Papers</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKw0AQhhdRsB7eYdEbvUjdU7KJdzbGA3gAW6-XyWaq0bSpu6nSex_cLa0KglfDDP_3M3yEHHDW5yzhJ0dnw7w4Loo-z5SMdKpZnzHGY643SO_ntkl6TEsZZVKLbbLj_UvIqCTTPfJZNGg719pnnNQWGnqOTw4q6Op2StsxfUCwXf2OdNCAfaUxffT19ImOnh1idF5PcOpDMnB_e4YL3-GEDsBjRUPX7bzp6g9omrDm4MpwuoNp281L9HtkawyNx_313CWPF8Uov4pu7i-v87ObCKRWXcQzqyARFUuErLDSNpWlxbgSmVIpr2CcsLiMEytSrUBoLrhK4zSGqtQyKzGRu-Rw1Ttz7dscfWde2rkL33sjeMYkU1pkIXW6SlnXeu9wbGaunoBbGM7M0roxS-umKMzSsFkaNmvrAU5WMHiLv_Xf5P_gF5hHh3M</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Mengelizadeh, Nezamaddin</creator><creator>Pourzamani, Hamidreza</creator><creator>Saloot, Morteza Khodadadi</creator><creator>Hajizadeh, Yaghoub</creator><creator>Parseh, Iman</creator><creator>Parastar, Saeed</creator><creator>Niknam, Noureddin</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20190501</creationdate><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><author>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Chemical oxygen demand</topic><topic>CI Reactive Black 5</topic><topic>Current density</topic><topic>Degradation</topic><topic>Electrochemistry</topic><topic>Energy consumption</topic><topic>Free radicals</topic><topic>Hydrogen peroxide</topic><topic>Microelectrodes</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>pH effects</topic><topic>Reaction time</topic><topic>Taguchi methods</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mengelizadeh, Nezamaddin</creatorcontrib><creatorcontrib>Pourzamani, Hamidreza</creatorcontrib><creatorcontrib>Saloot, Morteza Khodadadi</creatorcontrib><creatorcontrib>Hajizadeh, Yaghoub</creatorcontrib><creatorcontrib>Parseh, Iman</creatorcontrib><creatorcontrib>Parastar, Saeed</creatorcontrib><creatorcontrib>Niknam, Noureddin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mengelizadeh, Nezamaddin</au><au>Pourzamani, Hamidreza</au><au>Saloot, Morteza Khodadadi</au><au>Hajizadeh, Yaghoub</au><au>Parseh, Iman</au><au>Parastar, Saeed</au><au>Niknam, Noureddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>145</volume><issue>5</issue><issn>0733-9372</issn><eissn>1943-7870</eissn><abstract>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25 mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200 mg/L), and RB5 concentration (25–100 mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200 mg/L, current density 15 mA/cm2, RB5 concentration 100 mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EE.1943-7870.0001517</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9372 |
ispartof | Journal of environmental engineering (New York, N.Y.), 2019-05, Vol.145 (5) |
issn | 0733-9372 1943-7870 |
language | eng |
recordid | cdi_proquest_journals_2190304729 |
source | ASCE library |
subjects | Aromatic compounds Chemical oxygen demand CI Reactive Black 5 Current density Degradation Electrochemistry Energy consumption Free radicals Hydrogen peroxide Microelectrodes Multi wall carbon nanotubes Nanotechnology Nanotubes Optimization Organic chemistry pH effects Reaction time Taguchi methods Technical Papers |
title | Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T21%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Degradation%20of%20Reactive%20Black%205%20Using%20Three-Dimensional%20Electrochemical%20System%20Based%20on%20Multiwalled%20Carbon%20Nanotubes&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Mengelizadeh,%20Nezamaddin&rft.date=2019-05-01&rft.volume=145&rft.issue=5&rft.issn=0733-9372&rft.eissn=1943-7870&rft_id=info:doi/10.1061/(ASCE)EE.1943-7870.0001517&rft_dat=%3Cproquest_cross%3E2190304729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190304729&rft_id=info:pmid/&rfr_iscdi=true |