Loading…

Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes

AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of environmental engineering (New York, N.Y.) N.Y.), 2019-05, Vol.145 (5)
Main Authors: Mengelizadeh, Nezamaddin, Pourzamani, Hamidreza, Saloot, Morteza Khodadadi, Hajizadeh, Yaghoub, Parseh, Iman, Parastar, Saeed, Niknam, Noureddin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63
cites cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63
container_end_page
container_issue 5
container_start_page
container_title Journal of environmental engineering (New York, N.Y.)
container_volume 145
creator Mengelizadeh, Nezamaddin
Pourzamani, Hamidreza
Saloot, Morteza Khodadadi
Hajizadeh, Yaghoub
Parseh, Iman
Parastar, Saeed
Niknam, Noureddin
description AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25  mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200  mg/L), and RB5 concentration (25–100  mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200  mg/L, current density 15  mA/cm2, RB5 concentration 100  mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.
doi_str_mv 10.1061/(ASCE)EE.1943-7870.0001517
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2190304729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2190304729</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</originalsourceid><addsrcrecordid>eNp1kNtKw0AQhhdRsB7eYdEbvUjdU7KJdzbGA3gAW6-XyWaq0bSpu6nSex_cLa0KglfDDP_3M3yEHHDW5yzhJ0dnw7w4Loo-z5SMdKpZnzHGY643SO_ntkl6TEsZZVKLbbLj_UvIqCTTPfJZNGg719pnnNQWGnqOTw4q6Op2StsxfUCwXf2OdNCAfaUxffT19ImOnh1idF5PcOpDMnB_e4YL3-GEDsBjRUPX7bzp6g9omrDm4MpwuoNp281L9HtkawyNx_313CWPF8Uov4pu7i-v87ObCKRWXcQzqyARFUuErLDSNpWlxbgSmVIpr2CcsLiMEytSrUBoLrhK4zSGqtQyKzGRu-Rw1Ttz7dscfWde2rkL33sjeMYkU1pkIXW6SlnXeu9wbGaunoBbGM7M0roxS-umKMzSsFkaNmvrAU5WMHiLv_Xf5P_gF5hHh3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190304729</pqid></control><display><type>article</type><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><source>ASCE library</source><creator>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</creator><creatorcontrib>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</creatorcontrib><description>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25  mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200  mg/L), and RB5 concentration (25–100  mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200  mg/L, current density 15  mA/cm2, RB5 concentration 100  mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</description><identifier>ISSN: 0733-9372</identifier><identifier>EISSN: 1943-7870</identifier><identifier>DOI: 10.1061/(ASCE)EE.1943-7870.0001517</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Aromatic compounds ; Chemical oxygen demand ; CI Reactive Black 5 ; Current density ; Degradation ; Electrochemistry ; Energy consumption ; Free radicals ; Hydrogen peroxide ; Microelectrodes ; Multi wall carbon nanotubes ; Nanotechnology ; Nanotubes ; Optimization ; Organic chemistry ; pH effects ; Reaction time ; Taguchi methods ; Technical Papers</subject><ispartof>Journal of environmental engineering (New York, N.Y.), 2019-05, Vol.145 (5)</ispartof><rights>2019 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</citedby><cites>FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EE.1943-7870.0001517$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0001517$$EHTML$$P50$$Gasce$$H</linktohtml></links><search><creatorcontrib>Mengelizadeh, Nezamaddin</creatorcontrib><creatorcontrib>Pourzamani, Hamidreza</creatorcontrib><creatorcontrib>Saloot, Morteza Khodadadi</creatorcontrib><creatorcontrib>Hajizadeh, Yaghoub</creatorcontrib><creatorcontrib>Parseh, Iman</creatorcontrib><creatorcontrib>Parastar, Saeed</creatorcontrib><creatorcontrib>Niknam, Noureddin</creatorcontrib><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><title>Journal of environmental engineering (New York, N.Y.)</title><description>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25  mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200  mg/L), and RB5 concentration (25–100  mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200  mg/L, current density 15  mA/cm2, RB5 concentration 100  mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</description><subject>Aromatic compounds</subject><subject>Chemical oxygen demand</subject><subject>CI Reactive Black 5</subject><subject>Current density</subject><subject>Degradation</subject><subject>Electrochemistry</subject><subject>Energy consumption</subject><subject>Free radicals</subject><subject>Hydrogen peroxide</subject><subject>Microelectrodes</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>pH effects</subject><subject>Reaction time</subject><subject>Taguchi methods</subject><subject>Technical Papers</subject><issn>0733-9372</issn><issn>1943-7870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kNtKw0AQhhdRsB7eYdEbvUjdU7KJdzbGA3gAW6-XyWaq0bSpu6nSex_cLa0KglfDDP_3M3yEHHDW5yzhJ0dnw7w4Loo-z5SMdKpZnzHGY643SO_ntkl6TEsZZVKLbbLj_UvIqCTTPfJZNGg719pnnNQWGnqOTw4q6Op2StsxfUCwXf2OdNCAfaUxffT19ImOnh1idF5PcOpDMnB_e4YL3-GEDsBjRUPX7bzp6g9omrDm4MpwuoNp281L9HtkawyNx_313CWPF8Uov4pu7i-v87ObCKRWXcQzqyARFUuErLDSNpWlxbgSmVIpr2CcsLiMEytSrUBoLrhK4zSGqtQyKzGRu-Rw1Ttz7dscfWde2rkL33sjeMYkU1pkIXW6SlnXeu9wbGaunoBbGM7M0roxS-umKMzSsFkaNmvrAU5WMHiLv_Xf5P_gF5hHh3M</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Mengelizadeh, Nezamaddin</creator><creator>Pourzamani, Hamidreza</creator><creator>Saloot, Morteza Khodadadi</creator><creator>Hajizadeh, Yaghoub</creator><creator>Parseh, Iman</creator><creator>Parastar, Saeed</creator><creator>Niknam, Noureddin</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20190501</creationdate><title>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</title><author>Mengelizadeh, Nezamaddin ; Pourzamani, Hamidreza ; Saloot, Morteza Khodadadi ; Hajizadeh, Yaghoub ; Parseh, Iman ; Parastar, Saeed ; Niknam, Noureddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aromatic compounds</topic><topic>Chemical oxygen demand</topic><topic>CI Reactive Black 5</topic><topic>Current density</topic><topic>Degradation</topic><topic>Electrochemistry</topic><topic>Energy consumption</topic><topic>Free radicals</topic><topic>Hydrogen peroxide</topic><topic>Microelectrodes</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>pH effects</topic><topic>Reaction time</topic><topic>Taguchi methods</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mengelizadeh, Nezamaddin</creatorcontrib><creatorcontrib>Pourzamani, Hamidreza</creatorcontrib><creatorcontrib>Saloot, Morteza Khodadadi</creatorcontrib><creatorcontrib>Hajizadeh, Yaghoub</creatorcontrib><creatorcontrib>Parseh, Iman</creatorcontrib><creatorcontrib>Parastar, Saeed</creatorcontrib><creatorcontrib>Niknam, Noureddin</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mengelizadeh, Nezamaddin</au><au>Pourzamani, Hamidreza</au><au>Saloot, Morteza Khodadadi</au><au>Hajizadeh, Yaghoub</au><au>Parseh, Iman</au><au>Parastar, Saeed</au><au>Niknam, Noureddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes</atitle><jtitle>Journal of environmental engineering (New York, N.Y.)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>145</volume><issue>5</issue><issn>0733-9372</issn><eissn>1943-7870</eissn><abstract>AbstractThe removal of Reactive Black 5 (RB5) dye and chemical oxygen demand (COD) was investigated using a three-dimensional (3D) electrochemical (3DE) reactor with multiwalled carbon nanotubes (MWCNTs). The experiments were performed according to a Taguchi design model, with the variables being the solution pH (2–9), current density (10–25  mA/cm2), reaction time (15–60 min), MWCNT concentration (25–200  mg/L), and RB5 concentration (25–100  mg/L). The best conditions for optimum removal of RB5 and COD were pH 3, MWCNT concentration 200  mg/L, current density 15  mA/cm2, RB5 concentration 100  mg/L, and reaction time 60 min. Among the main factors, the solution pH for removal of COD and RB5 and the current density for energy consumption had the highest impact. The 3D system generated more H2O2 and OH radicals compared with a two-dimensional (2D) system because the MWCNTs act as microelectrodes in the optimal conditions. In the 3D process, the production of high levels of reactive species led to an increase in the degradation of RB5 into aromatic compounds and various acids.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EE.1943-7870.0001517</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9372
ispartof Journal of environmental engineering (New York, N.Y.), 2019-05, Vol.145 (5)
issn 0733-9372
1943-7870
language eng
recordid cdi_proquest_journals_2190304729
source ASCE library
subjects Aromatic compounds
Chemical oxygen demand
CI Reactive Black 5
Current density
Degradation
Electrochemistry
Energy consumption
Free radicals
Hydrogen peroxide
Microelectrodes
Multi wall carbon nanotubes
Nanotechnology
Nanotubes
Optimization
Organic chemistry
pH effects
Reaction time
Taguchi methods
Technical Papers
title Electrochemical Degradation of Reactive Black 5 Using Three-Dimensional Electrochemical System Based on Multiwalled Carbon Nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T21%3A29%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Degradation%20of%20Reactive%20Black%205%20Using%20Three-Dimensional%20Electrochemical%20System%20Based%20on%20Multiwalled%20Carbon%20Nanotubes&rft.jtitle=Journal%20of%20environmental%20engineering%20(New%20York,%20N.Y.)&rft.au=Mengelizadeh,%20Nezamaddin&rft.date=2019-05-01&rft.volume=145&rft.issue=5&rft.issn=0733-9372&rft.eissn=1943-7870&rft_id=info:doi/10.1061/(ASCE)EE.1943-7870.0001517&rft_dat=%3Cproquest_cross%3E2190304729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-19c4a62d0623ded7c83bce5d294481daf605b56c2874a2712148585adb739be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190304729&rft_id=info:pmid/&rfr_iscdi=true